

RedPipe: Pain-Free Pipelining

Did you try to use Redis pipelines?
Did you get a pounding headache?
Did you throw your laptop in frustration?
Never fear.
RedPipe will make you feel better almost immediately.
If you have no idea what Redis is or why you should pipeline commands, look it up [https://redis.io/topics/pipelining] already.

[image: BuildStatus] [https://travis-ci.org/72squared/redpipe] [image: CoverageStatus] [https://coveralls.io/github/72squared/redpipe?branch=master] [image: Version] [https://badge.fury.io/py/redpipe] [image: Python] [https://pypi.python.org/pypi/redpipe/]

Requirements

The redpipe module requires Python 3 or higher.

It also requires redis-py [https://redis-py.readthedocs.io].

What is RedPipe?

RedPipe is a wrapper around the pipeline component of redis-py [https://redis-py.readthedocs.io].
It makes it easy to reduce network round trips when talking to Redis.
The interface is very similar to redis-py.
Pipelined commands work almost like non-pipelined commands.

For more general information about redis pipelining, see the official redis documentation [https://redis.io/topics/pipelining].

Use RedPipe to build pipelined redis calls in a modular reusable way.
Rewrite your existing application calls via redis-py into efficient batches with only minimal changes.

How Does it Work?

RedPipe makes pipeline commands work almost like non-pipelined commands in redis-py.
You may have used pipelines before in a few spots as a last-minute performance optimization.
Redpipe operates with a different paradigm.
It assumes every call will be pipelined.
And it gives you the tools to do it.

Some concepts sound complicated:

	futures for data prior to pipeline execution

	callbacks on pipeline execution

	nested pipelines

This documentation will explain all of these concepts and why they are important.
All of these things together allow you to build modular functions that can be combined with other pipelined functions.
You will be able to pass a pipeline into multiple functions, collect the results from each function, and then execute the pipeline to hydrate those result objects with data.

What do I Need to Know to Start?

If you’ve used redis-py, you know most of what you need already to start using RedPipe.

If not, head over there and play with redis-py [https://redis-py.readthedocs.io] first.
Or check out this very easy tutorial on redis-py basics:

http://agiliq.com/blog/2015/03/getting-started-with-redis-py/

You’ll find the redpipe api looks nearly identical.
That’s because RedPipe is a wrapper around redis-py.

RedPipe adds the ability to pipeline commands in a more natural way.

What Else Can it do?

You can use just the core of the RedPipe.
Wrap your existing redis-py commands with RedPipe and profit.
But the library unlocks a few other cool things too:

	Keyspaces allow you to work more easily with collections of Redis keys.

	Structs give you an object-oriented interface to working with Redis hashes.

Both components will make it easier to manipulate data in your application.
And they are optimized for maximum network efficiency.
You can pipeline Keyspaces and Structs just like you can with the core of RedPipe.

User Documentation

This part of the documentation explains why you need RedPipe.
Then it focuses on step-by-step instructions for getting the most out of RedPipe.

	Rationale
	Why do I need this?

	Pipelining is Cool, But …

	Pipelining is Hard to do

	How RedPipe Makes Things Easier

	Reusable Building Blocks

	Getting Started
	Installation

	Get the Source Code

	Connect redis-py to RedPipe

	Using RedPipe

	Reusable Functions

	Futures
	Gotchas

	Examples

	Json Serialization

	Automatic Pipeline Execution

	Callbacks
	Use Cases

	Gotchas

	Named Connections
	How to Configure multiple Connections

	Why Named Connections are Needed

	Talking to Multiple Servers in Parallel

	Nested Pipelines
	How it works

	How to use it

	Transactions

	Working with Keyspaces
	Example of a Sorted Set Keyspace

	Supported Keyspace Types

	Hashed Strings

	Character Encoding in Keyspaces

	Fields in Hashes

	Data Types defined for Keyspaces

	Scanning the Keys in a Keyspace

	Structs
	Easy, Efficient I/O

	Defining a Struct

	Creating New Structs

	Accessing the Data

	Modifying Structs

	Using the Underlying Hash

	Deleting Structs

	Extra Fields

	Temporary Structs

	Why Struct and not Model?

	Why no ORM?

	Latency

	Project Status
	Road Map

	Open Source Redis Cluster Support

	Error Handling
	Redis Pipelining and Errors

	Errors Raised by RedPipe

	Unicode Support

	Licensing

	FAQ
	Q: Why am I getting InvalidPipeline?

	Q: I used decode_responses in redis and got an error in redpipe. WTF?

	Q: Why name it RedPipe? That’s dumb.

Community Documentation

This part of the documentation explains the RedPipe ecosystem.

	Testing
	Test Setup

	Running the Tests

	Running Tests Against Supported Python Versions

	Using Docker to Test

	Building Documentation

	Benchmarking

	Inspiration

	Disclaimers
	Thread Safety

	Character Encoding

	Lua Scripting

	Contributing

	Release Notes
	4.0.1 (December 28, 2022)

	4.0.0 (December 27, 2022)

	3.0.1 (December 26, 2022)

	3.0.0 (December 26, 2022)

	2.3.6 (October 30, 2019)

	2.3.5 (July 3, 2019)

	2.3.4 (June 24, 2019)

	2.3.3 (June 21, 2019)

	2.3.2 (June 19, 2019)

	2.3.1 (Nov 29, 2018)

	2.3.0 (Nov 28, 2018)

	2.2.0 (Aug 14, 2018)

	2.1.2 (July 17, 2018)

	2.1.1 (July 13, 2018)

	2.1.0 (July 11, 2018)

	2.0.2 (May 23, 2018)

	2.0.1 (March 15, 2018)

	2.0.0 (March 8, 2018)

	1.0.4 (September 28, 2017)

	1.0.3 (August 10, 2017)

	1.0.2 (June 23, 2017)

	1.0.1 (May 29, 2017

	1.0.0 (May 11, 2017

	1.0.0rc3 (May 10, 2017)

	1.0.0rc2 (May 9, 2017)

	1.0.0rc1 (May 7, 2017)

	0.5.0 (May 5, 2017)

	0.4.0 (May 4, 2017)

	0.3.2 (May 3, 2017)

	0.3.1 (May 2, 2017)

	0.3.0 (April 30, 2017)

	0.2.5 (April 30, 2017)

	0.2.4 (April 28, 2017)

	0.2.3 (April 27, 2017)

	0.2.2 (April 26, 2017)

	0.2.1 (April 24, 2017)

	0.2.0 (April 24, 2017)

	0.1.1 (April 23, 2017)

	0.1.0 (April 21, 2017)

	Old Releases

	Project Authors

API Documentation

This part of the documentation provides detailed API documentation.
Dig into the source code and see how everything ties together.
This is what is great about open-source projects.
You can see everything.

	redpipe package
	Module Structure

	Connections

	Fields

	Keyspaces

	Exceptions

	Misc

	Submodules

	redpipe.connections module

	redpipe.exceptions module

	redpipe.fields module

	redpipe.futures module

	redpipe.keyspaces module

	redpipe.luascripts module

	redpipe.pipelines module

	redpipe.structs module

	redpipe.tasks module

	redpipe.version module

Rationale

Why do I need this?

Redis is really fast.
If you only use redis on your laptop over a unix domain socket, go away.
You probably do not need to think about pipelining.

But in production scenarios, redis is usually running on another machine.
That means the client needs to talk to redis server over a network.
If you are in AWS Ec2, there’s a good chance your redis server is in a different availablity zone.

Your application latency is determined by the speed of your network.
If you make many calls to redis to satisfy a single request, application latency can be terrible.

Each command needs to make another trip across the network.
If your network round trip time is one millisecond, that doesn’t seem too terrible.
But if you have dozens or hundreds of redis commands, this adds up quickly.

Pipelining is Cool, But …

Redis pipelining [https://redis.io/topics/pipelining] can dramatically reduce the number of network round trips.
It boxcars a bunch of commands together over the wire.
When running 50 commands against Redis, instead of 50 network round trips in serial order, boxcar them all together in one..

this is pure redis-py code, not using redpipe here
client = redis.Redis()
with client.pipeline() as pipe:
 for i in range(0, 50):
 pipe.incr('foo%d' % i)

 # the one network round trip happens here.
 results = pipe.execute()

That’s a BIG improvement in application latency.
And you don’t need RedPipe to do this. It’s built into redis-py and almost every other redis client.

Pipelining is Hard to do

Here’s the catch … the results aren’t available until after you execute the pipeline.

In the example above, consuming the results on pipe execute is pretty easy.
All of the results are uniform and predictable from a loop. but what if they aren’t?

Here’s an example of pipelining heterogenous commands.

redis-py code example, not redpipe!
client = redis.Redis()
with client.pipeline() as pipe:
 pipe.incr('key1')
 pipe.expire('key1', 60)
 pipe.incrby('key2', '3')
 pipe.expire('key2', 60)
 key1, expire_key1, key2, expire_key2 = pipe.execute()

See how the results are separated from the action we want to perform?
This example is a bit contrived but it illustrates a point.
We have to be careful the results from the pipeline match up with the invocation order.

And what if we want to create a reusable function that can be pipelined?

Here’s what I’d like to be able to do:

def increment_and_expire(key, num, expire, pipe):
 pipe.incrby(key, num)
 pipe.expire(expire)
 # return result of incrby operation
 # HOW????

I want to return the result of the pipe.incrby call from the function.
But the result isn’t available until pipe.execute.
This happens outside the scope of the function.
And the caller of the function doesn’t know how many pipeline calls were invoked.
So grabbing the correct value from pipe.execute() is tricky.

Also, consider the difference between the direct and pipeline interfaces in redis-py:

redis-py non-pipelined example
result = client.incr('key1')

vs.

redis-py pipelined example
pipe = client.pipeline()
pipe.incr('key1')
result = pipe.execute()[0]

Although the calls look almost the same, the way you fetch the result is very different.

Bottom line, it’s inconvenient to use pipelines in python.
And it is especially inconvenient when trying to create modular and reusable components.

How RedPipe Makes Things Easier

RedPipe makes things easier by first making it harder.
It’s a paradigm shift.
You ready?
Here it comes.

All redis calls are pipelined.

On the surface this seems unnecessary.
But stick with me for a few minutes.
It will unlock the tools to break up pipelined calls into modular reusable components.

The first step is to make the commands return a reference to the data immediately.
We’ll call this reference object a Future.
The redpipe.Future object gets populated with data once the pipeline executes.

That makes the code look very much like a non-pipelined call.
You invoke the redis-py method and you get a response back from that call.
The response is a redpipe.Future object, but you don’t ever need to think about that.

Once the pipeline executes, the Future behaves just like the underlying result.

RedPipe embraces the spirit of duck-typing [https://en.wikipedia.org/wiki/Duck_typing#In_Python].

You can iterate on a Future if the result is a list.
Add or subtract from it if it is an int.
Print it out like a string.
In short, you should be able to use it interchangeably with the underlying future.result field.

This gives us the ability to create reusable building blocks.

How, wait what??

Okay, keep reading.
I’ll explain.

Reusable Building Blocks

here’s how RedPipe allows me to do what I wanted to do above.

def increment_and_expire(key, num=1, expire=60, pipe=None):
 pipe = redpipe.pipeline(pipe)
 ref = pipe.incrby(key, num)
 pipe.expire(key, expire)
 pipe.execute()
 return ref

Now we have a reusable function!
redpipe.pipeline can give us a pipeline if no pipeline is passed into the function.
Or it wraps the one passed in.
Let’s invoke our function!

with redpipe.pipeline() as pipe:
 key1 = increment_and_expire('key1', pipe=pipe)
 key2 = increment_and_expire('key2', pipe=pipe)
 pipe.execute()

print(key1)
print(key2)

Or I can call the function all by itself without passing in a pipe.

print(increment_and_expire('key3'))

The function will always pipeline the incrby and expire commands together.

When we pass in one pipeline() into another, it creates a nested structure.
When we pass in a pipeline to our function, it will combine with the other calls above it too!
So you could pipeline a hundred of calls without any more complexity:

with redpipe.pipeline() as pipe:
 results = [increment_and_expire('key%d' % i, pipe=pipe) for i in range(0, 100)]
 pipe.execute()
print(results)

We have sent 200 redis commands with only 1 network round-trip. Pretty cool, eh?
This only scratches the surface of what we can do.

Getting Started

Installation

To install, use pip:

pip install redpipe

or from source:

python setup.py install

Get the Source Code

RedPipe is actively developed on GitHub.

You can either clone the public repository:

git clone git://github.com/72squared/redpipe.git

Or, download the tarball:

curl -OL https://github.com/72squared/redpipe/tarball/master

Once you have a copy of the source, install it into your site-packages easily:

python setup.py install

Connect redis-py to RedPipe

To use redpipe, You need to bind your redis client instance to RedPipe.
Use the standard redis-py [https://redis-py.readthedocs.io/en/latest/#] client.

client = redis.Redis()
redpipe.connect_redis(client)

You only need to do this setup once during application bootstrapping.

This example just sets one connection up as a default, since that is the most common case.
But you can connect multiple redis connections to RedPipe.

The goal is to reuse your application’s existing redis connection.
RedPipe can be used to build your entire persistence layer in your application.
Or you can use RedPipe along side your existing code.

More on this later.

Using RedPipe

Using RedPipe is easy.
We can pipeline multiple calls to redis and assign the results to variables.

with redpipe.pipeline() as pipe:
 foo = pipe.incr('foo')
 bar = pipe.incr('bar)
 pipe.execute()
print([foo, bar])

RedPipe allocates a pipeline object.
Then we increment a few keys on the pipeline object.
The code looks mostly like the code you might write with redis-py pipelines.
The methods you call on the pipeline object are the same.
But, notice that each incr call immediately gets a reference object back in return from each call.
That part looks similar to how redis-py works without a pipeline.

The variables (in this case foo and bar) are empty until the pipeline executes.
If you try to do any operations on them beforehand, it will raise an exception.
Once we complete the execute() call we can consume the pipeline results.
These variables, foo and bar, behave just like the underlying result once the pipeline executes.
You can iterate over it, add it, multiply it, etc.

Reusable Functions

You can write a function that can work as a standalone chunk of logic
and can also be linked to other pipelines.

Here’s a quick example of what I mean:

def get_foo(pipe=None):
 with redpipe.pipeline(pipe=pipe) as pipe:
 pipe.setnx('foo', 'bar')
 foo = pipe.get('foo')
 pipe.execute()
 return foo

It is easy to see how this works as an standalone function. It looks almost
like what you might write if you were just using redis-py.

print(get_foo())

This will pipeline the following commands to redis:

	SETNX foo bar

	GET foo

But the magic happens when you link this function with other pipeline objects.

with redpipe.pipeline() as pipe:
 foo = get_foo(pipe)
 bar = pipe.get('bar')
 pipe.execute()

This example will pipeline these three commands together:

	SETNX foo bar

	GET foo

	GET bar

In this example, the foo and bar variables are both redpipe.Future objects.
They are empty until the pipe.execute() happens outside of the function.
The pipe.execute() called inside the get_foo function in this case is a NestedPipeline.
It passes its stack of commands to the parent pipeline.
That’s because we passed a pipeline object into the get_foo function.
The function passed that into redpipe.pipeline and it returned a NestedPipeline to wrap the one passed in.

Futures

When redis clients communicate with the server, they send a command, then wait for the response.
The redis-py client reflects this design choice.
But when you pipeline, you don’t wait.
You queue up a bunch of commands.
Then you execute them.
Then you gather these results and feed them back to where they need to go.

This forces the code invoking the execute method to know what to do with all the responses.

That’s pretty inconvenient.

The RedPipe Future makes it possible to get a reference to the data before pipeline execute happens.
A Future is a contract that says the result of this redis command will be populated into this object once the pipeline executes.
And you can use a Future just like you would the actual result.
But only after the pipeline executes.
If you try to use it prior to that, it raises a redpipe.ResultNotReady exception.
Kaboom!

Well, what use is that?

For one, it makes it easier to assign it a variable name in the context of calling the command.
No confusion about how to get the result you need from the array of results returned by pipeline.execute.
Unlike redis-py RedPipe does not return an array of results on the execute call.
You already have the result as a variable returned from the command you called initially.

More importantly, the Future can be passed into a python closure that can do additional work.
Tell the pipeline to execute your closure callback function after it runs.
Now you have a powerful mechanism to format those results and build modular reusable components.

Still don’t quite see how? Read more about callbacks.

Gotchas

There are a few gotchas to watch out for:

	isinstance() checks

	identity checks like: future is None

	trying to mutate the object like this: future += 1

You can always type cast the object into the type you expect
if you need this behavior.

f = Future()
f.set(1)

`f is 1` fails
assert(int(f) is 1) # works

This doesn’t work so well for is None checks.
You can’t type-cast to None.
You can use equality checks though.

f = Future()
f.set(None)
assert(f == None)

This is frowned upon by most lint-checks who think the is comparison is more appropriate.
But if you do an is comparison, that compares the object ids.
And there’s no way for RedPipe to wrap that.

UGH!

In response, I came up a handy IS method.

f = Future()
f.set(None)
assert(f.IS(None))

Or you can access the underlying result:

f = Future()
f.set(None)

assert(f.result is None)

Hope that helps.

Examples

Other than those few caveats, you should be able to access a future object
just like the underlying result.

Here are some examples if your result is numeric.

future = Future()
future.set(1)
assert(future == 1)
assert(future != 2)
assert(future > 0)
assert(future < 2)
assert(future >= 1)
assert(future <= 1)
assert(bool(future))
assert(float(future) == 1.0)
assert(future + 1 == 2)
assert(future * 2 == 2)
assert(future ^ 1 == 0)
assert(repr(future) == '1')

And here is an example if your future is a list:

future = Future()
future.set([1])
assert(future == [1])
assert([v for v in future] == [1])
assert(future + [2] == [1, 2])

And here is a dictionary:

future = Future()
future.set({'a': 1})
assert(future == {'a': 1})
assert(dict(future) == {'a': 1})
assert({k: v for k, v in future.items()} == {'a': 1})

There are many more operations supported but these are the most common.
Let me know [https://github.com/72squared/redpipe/issues] if you need
more examples or explanation.

Json Serialization

The default json serializer doesn’t know anything about RedPipe Futures.
When it encounters a Future, the json encoder would normally blow up.

I monkey-patched it so it will serialize correctly.

future = Future()
future.set({'a': 1})
json.dumps(future)

The monkey-patching is pretty simple.
Take a look at the source code [https://github.com/72squared/redpipe/blob/master/redpipe/futures.py] if you are interested.
If you have serious objections to this hack, let me know [https://github.com/72squared/redpipe/issues].

If you used a different json serializer, I can’t help you.
You may be able to patch those libraries on your own.
Or you could also explicitly extract the result or type-cast before encoding as json.

Automatic Pipeline Execution

By default, you must call pipe.execute for the commands to be sent to redis.
With the autoexec flag, you can save a step:

with redpipe.pipeline(pipe=pipe, autoexec=True) as pipe:
 foo_count = pipe.incr('foo')

 print(foo_count)

Notice we are using the with control-flow structure block.
As you leave the block, it triggers the __exit__ method on the pipe object.
If the autoexec flag was set, the method verifies no exception was thrown and executes the pipeline.
Otherwise, you must call pipe.execute() explicitly.

There’s even a wrapper for this because it is used so often:

with redpipe.autoexec(pipe=pipe) as pipe:
 foo_count = pipe.incr('foo')

 print(foo_count)

Callbacks

What if we want to be able to combine the results of multiple operations inside a function?
We need some way to wait until the pipeline executes and then combine the results.
Callbacks to the rescue!

Let me show you what I mean.

(This example uses the autoexec flag.
If you missed that section, read about it here.)

def incr_sum(keys, pipe=None):
 future = redpipe.Future()

 with redpipe.pipeline(pipe, autoexec=True) as pipe:
 results = [pipe.incr(key) for key in keys]

 def cb():
 future.set(sum(results))

 pipe.on_execute(cb)

 return future

now get the value on 100 keys
print(incr_sum(["key%d" % i for i in range(0, 100)]))

We didn’t pass in a pipeline to the function.
It pipelines internally.
So if we are just calling the function one time, no need to pass in a pipeline.
But if we need to call it multiple times or in a loop, we can pass a pipeline in.

with redpipe.pipeline(autoexec=True) as pipe:
 first = incr_sum(["key%d" % i for i in range(0, 100)], pipe=pipe)
 second = incr_sum(["key%d" % i for i in range(100, 200)], pipe=pipe)

print(first)
print(second)

The pipeline context knows how to nest these operations.
As each child context completes it passes its commands and callbacks up a level.
The top pipeline context executes the functions and callbacks, creating the final result.

Use Cases

Callbacks can be used for all kinds of purposes.
In fact, the internals of RedPipe take advantage of the callback hook for many different purposes.

Here are some examples:

	Formatting the results of a redis command before returning it

	combining multiple results from several pipelined commands into a single response

	attaching data from a pipelined call to other objects in your application

Gotchas

You can put just about anything you want into a callback.
But try to avoid the trap of making subsequent network calls within a callback when building a function.
It limits the reusability of your modular building block.
The problem is that while the first network round-trip can be pipelined, you won’t be able to pipeline the second.

Here’s an example of what I mean:

def incr_if_gt(key, threshold, pipe=None):
 with redpipe.pipeline(pipe, autoexec=True) as pipe:
 future = redpipe.Future()
 value = pipe.get(key)

 def cb():
 if value > threshold:
 with redpipe.autoexec() as p:
 future.set(p.incr(key))
 else:
 future.set(int(value))

 pipe.on_execute(cb)

 return future

While this code example certainly would work, the p.incr(key) command inside could not be pipelined with anything.
So your get command could be pipelined with many other calls, but if it needs to increment the key, it will need to do it all alone.

Bad programmer. No cookie.

Nor can you use the pipe object from the context inside of our parent function.
The reason is because when the pipe exits the with block, it resets the list of commands and callbacks.

Named Connections

So far the examples I’ve shown have assumed only one connection to Redis.
But what if you need to talk to multiple backends?

How to Configure multiple Connections

RedPipe allows you to set up different connections and then refer to them:

redpipe.connect_redis(redis.Redis(port=6379), name='users')
redpipe.connect_redis(redis.Redis(port=6380), name='messages')

Now I can refer to those named connections inside my functions and throughout my application.

with redpipe.pipeline(name='users', autoexec=True) as users:
 users.hset('u{1}', 'name', 'joe')

with redpipe.pipeline(name='messages', autoexec=True) as messages:
 messages.hset('m{1}', 'body', 'hi there')

If you don’t specify a name, it assumes a default connection set up like this:

redpipe.connect_redis(redis.Redis(port=6379))

You can actually map the same redis connection to multiple names if you want.
This is good for aliasing names when preparing to split up data, or for testing.

Why Named Connections are Needed

RedPipe allows you to pass in a pipeline to a function, or optionally pass in nothing.
The function doesn’t have to think about it.
Just pass the pipe (or None) into redpipe.pipeline and everything looks the same under the covers.
But if you have multiple connections, the named pipe passed into the function may not be the same connection.
In this case, we need to always specify what connection we want to use.

If the connection is different than the one passed into the function, redpipe will still batch the two calls together in pipe execute from a logical perspective.
But it needs to send commands to different instances of redis server.
By specifying the connection you want to use with a named connection, you can make sure your command gets sent to the right server.

Talking to Multiple Servers in Parallel

When it’s time to send those commands to the servers, redpipe batches all commands for each server and sends them out.
RedPipe supports asynchronous execution of commands to multiple redis servers via threads.
You can disable this so that the batches sent to each redis server are performed in serial order.

If you talk to only one redis backend connection at a time, RedPipe doesn’t have to worry about parallel execution.
If you execute a pipeline that combines commands to multiple backends, redpipe will use threads to talk to all backends in parallel.

If you are uncomfortable using threads in your application, you can turn it off at any time via:

redpipe.disable_threads()

To re-enable this behavior, do:

redpipe.enable_threads()

If you see any problems with asynchronous execution, let me know [https://github.com/72squared/redpipe/issues].

Nested Pipelines

The ability to pass one pipeline into another dramatically simplifies your application code.
You can build a function that can perform a complete operation on its own.
You can also effortlessly connect that function to other pipelines.
You’ve seen it in action elsewhere in the documentation.
Let’s dive into what is actually happening under the covers.

How it works

The redpipe.pipeline function checks to see if you are passing in another pipeline object or not.
If you pass in nothing, it gives you back a root-level redpipe.pipelines.Pipeline object.
I deliberately did not expose this class at the root level of the package.
You never need to instantiate it directly.

This Pipeline object will collect your commands.
When Pipeline.execute is called, it obtains a redis.Pipeline and runs your pipelined commands.
Simple.

If you pass in a Pipeline object into the redpipe.pipeline function, it returns a redpipe.pipelines.NestedPipeline object.
Again, you should never need to instantiate it directly.
And you can use NestedPipeline exactly like the Pipeline object.

When you execute NestedPipeline, it passes all the commands and callbacks queued up to its parent.
The parent object is the one you passed into redpipe.pipeline.
This may be a Pipeline object, or it may be another NestedPipeline object.
It cleans itself up and defers execution responsibility to its parent.

The parent now waits for its execution method to be called.
When it does, it keeps passing commands up the chain until it winds up in a Pipeline object.
Then the commands get sent off to redis in one big batch.
Then the callbacks are triggered, and everything is ready to use.

How to use it

This architecture means when you build a function, you don’t need to think about what kind of pipeline you are recieving.
It could be a NestedPipeline or a Pipeline or nothing at all.

Just wrap it all up in redpipe.pipeline and do your work.

class Beer(redpipe.Hash):
 keyspace = 'B'
 fields = {
 'beer_name': redpipe.TextField,
 'consumed' redpipe.Integer,
 }

def get_beer_from_fridge(beer_id, quantity=1, pipe=None):
 with redpipe.pipeline(pipe, autoexec=True) as pipe:
 b = Beer(pipe)
 b.hincrby(beer_id, 'consumed', quantity)
 return b.hgetall(beer_id)

Now I can grab one beer from the fridge at a time.
Or I can take one in each hand.
Or I can grab a case!
And I can do it all in a single network transaction.

drinks = []
with redpipe.autoexec() as pipe:
 drinks.append(get_beer_from_fridge('schlitz', pipe=pipe))
 drinks.append(get_beer_from_fridge('guinness', 6, pipe=pipe))
print(drinks)

Transactions

When you talk aboout redis pipelining, most people conflate it with transactions [https://redis.io/topics/transactions].
In fact, the redis-py library conflates it by making a transaction flag you pass into the pipeline object.
There has been a lot of effort to make Redis behave in a transactional way.

This is not a goal for RedPipe.

RedPipe was written to improve network i/o.

Most of the concepts for RedPipe came from a project that uses Redis Cluster.
It’s not practical or supported to use transactions there.
Any kind of atomic multi-step operation is limited to a single key, and is best accomplished with a LUA script.

I haven’t disallowed transactions.
But I’m not going out of my way to try to support it either.

You can turn transactions on or off in setting up your connection.

client = redis.Redis()
redpipe.connect_redis(client, transaction=False)

I welcome discussion.
If this is a pain point for you, let me know <https://github.com/72squared/redpipe/issues>.

Working with Keyspaces

Usually when working with Redis, developers often group a collection of keys that are similar under a keyspace.
Use a key pattern with a prefix and curly braces around the unique identifier for that record.
For example, for a list of followers for user ids 1 and 2, I might have keys F{1} and F{2}.

This keyspace functions as a virtual table, like what you might have in a typical RDBMS.
Except that each key is really independent.
We just use a naming convention to group them together.

Example of a Sorted Set Keyspace

RedPipe gives you a way to easily manipulate these keyspaces.

Here’s an example of a sorted set:

class Followers(redpipe.SortedSet):
 keyspace = 'F'
 connection = 'default'

key1 = '1'
key2 = '2'
with redpipe.pipeline(name='default') as pipe:
 f = Followers(pipe=pipe)
 f.zadd(key1, 'a', score=1)
 f.zadd(key2, 'a', score=2)
 f1_members = f.zrange(key1, 0, -1)
 f2_members = f.zrange(key2, 0, -1)
 pipe.execute()

print(f1_members)
print(f2_members)

We can specify what named connection we want to use with the connection variable.
Or you can omit it if you are using just one default connection to redis.

You will notice the interface provided by the keyspace object redpipe.SortedSet looks just like redis-py functions.
Except it omits the name of the key. That’s because the key name is already specified in the constructor.

Supported Keyspace Types

All of the redis-py sorted set functions are exposed on the in the example above.

In a similar way, we support the other Redis primitives:

	strings

	sets

	lists

	hashes

	sorted sets

	hyperloglog

	geo (in progress)

All the commands associated with each data type are exposed for each.
See the official redis documentation [https://redis.io/commands] for more information, or refer to redis-py [https://redis-py.readthedocs.io/en/latest/index.html#module-redis].

Hashed Strings

Sometimes you have a set of keys that are simple key/value pairs and it makes
more sense to store all of them in a really large hash. That way you can store
all of them in one key. The overhead is much lower than storing thousands or
millions of individual keys.

But eventually you may find that you are storing hundreds of millions of these
pairs in a single hash key. In that case it makes more sense to be able to
split these up. This is what the Hashed Strings pattern does for you.

This is not really a core part of redpipe, but the pattern came up so
frequently that it made sense to include it here. And it is a relatively
small piece of code.

For now, refer to the test-case on how to use this.

More detailed documentation will be given in the future as this logic
solidifies.

Here is what a definition might look like:

class MyIndex(redpipe.HashedStrings):
 keyspace = 'my_index'
 connection = 'default'
 shard_count = 1000

This will namespace the shards under the keyspace my_index{%s}.
The string interpolated inside of this keyspace will be a string of digits
between 0 and 999.

To invoke it, you can do:

The result returned for key foo123 is a string test.

Character Encoding in Keyspaces

When you use redpipe.pipeline() directly, RedPipe disables automatic character decoding.
That’s because there’s no way to know how to decode responses for every single request that goes through redis.
The dump/restore commands, for example, never should automatically decode the binary data.
It’s not utf-8.
And if you are pickling python objects and storing them in redis, character encoding makes no sense.

With a Keyspace, though, it’s entirely appropriate to map the binary data in redis to appropriate encodings.
That’s because you are defining some application

There are some defaults you can tune per keyspace that you define:

	keyparse

	valueparse

We treat these as utf-8 encoded unicode strings, controlled by the formatter redpipe.TextField.
There are many other data types you can use.

They control how to encode the key and the values in the redis data structures.

In addition, redpipe.Hash gives you additional ways to encode and decode data for each individual member of the Hash.

Fields in Hashes

Often you want to store data in Hashes that maps to a particular data type.
For example, a boolean flag, an integer, or a float.
Redis stores all the values as byte strings and doesn’t interpret.
In the Keyspace, we default to treating all fields as unicode that is stored in redis as utf-8 binary strings.
If you need something different, you can set up explicit mappings for other data types in redpipe.Hash.
This is not required but it makes life easier.

class User(redpipe.Hash):
 keyspace = 'U'
 fields = {
 'first_name': redpipe.TextField,
 'last_name': redpipe.TextField,
 'admin': redpipe.BooleanField,
 'last_seen': redpipe.FloatField,
 'encrypted_secret': redpipe.BinaryField,
 }

You can see we defined a few fields and gave them types that we can use in python.
The fields will perform basic data validation on the input and correctly serialize and deserialize from a Redis hash key.

key = '1'
with redpipe.autoexec() as pipe:
 u = User(pipe=pipe)
 data = {
 'first_name': 'Fred',
 'last_name': 'Flitstone',
 'admin': True,
 'last_seen': time.time(),
 }
 u.hmset(key, data)
 ref = u.hgetall(key)

assert(ref == data)

You can see this allows us to set booleans, ints and other data types into the hash and get the same values back.

Data Types defined for Keyspaces

Here’s a list of all the different data types you can represent so far:

	BooleanField

	FloatField

	IntegerField

	TextField

	AsciiField

	BinaryField

	ListField

	DictField

	StringListField

If you don’t see the one you want, you can always write your own.
It’s pretty easy.
You just need an object that provides two methods:

	encode

	decode

The encode method that converts your python data structure into binary string.
And the decode method to will convert it back consistently into your original python structure.

Scanning the Keys in a Keyspace

When you use the scan command on a keyspace, RedPipe automatically builds a pattern that matches the keyspace you are using.
Any additional patterns you pass in are searched for inside of that pattern.
So you should be able easily iterate through a list of all keys in the keyspace.

Structs

A Struct in redpipe is a dictionary-like object with persistence built in.

Easy, Efficient I/O

You want to be able to load data and persist it into a hash and still preserve the data-type of the original structure.
We gave redpipe.Hash the ability to type-cast variables stored in redis.
But we could make it more convenient to fetch and save data as objects.

That’s where redpipe.Struct comes in.

Defining a Struct

Here’s an example of how to define a Struct.

assume we already set up our connection

set up a struct object.
class User(redpipe.Struct):
 keyspace = 'U'
 key_name = 'user_id'
 fields = {
 'name': redpipe.TextField,
 'last_seen': redpipe.IntegerField,
 'admin': redpipe.BooleanField,
 'page_views': redpipe.IntegerField,
 }

A lot of this looks very similar to how we defined redpipe.Hash.
That’s because struct is built on top of the Hash object.
It allows you to access data from a hash in a more object oriented manner.

The Struct does not enforce required fields on any of this data.
Just as a redis hash object does not.
It is up to your application logic to enforce these constraints.

The rule is that if the element is in the hash, it will be coerced into the appropriate data type by the fields definition.
If an element in the hash is not mentioned in the fields it is coerced into a TextField.

You can override this default behavior by defining valueparse.

class User(redpipe.Struct):
 keyspace = 'U'
 key_name = 'user_id'
 fields = {
 # ...
 }
 valueparse = redpipe.AsciiField

This example will force all values not listed in fields to be set as ascii values in redis.
(It does not coerce values already in redis to be ascii tho.
It will treat them as text.)

You can specify an alternate redis connection if you are using multiple redis connections in your app.

class User(redpipe.Struct):
 keyspace = 'U'
 key_name = 'user_id'
 fields = {
 # ...
 }
 connection = 'users'

The string value users refers to a connection you have added in application bootstrapping.
See the Named Connections section of this documentation.

Creating New Structs

Let’s create a few user objects using our Struct.
The first argument is always either the key or the data.

We pass in a pipeline so we can combine the save operation with other network i/o.

with redpipe.autoexec() as pipe:
 # create a few users
 ts = int(time.time())
 u1 = User({'user_id': '1', 'name': 'Jack', 'last_seen': ts}, pipe=pipe)
 u2 = User({'user_id': '2', 'name': 'Jill', 'last_seen': ts}, pipe=pipe)

these model objects print out a json dump representation of the data.
print("first batch: %s" % [u1, u2])

we can access the data like we would dictionary keys
assert(u1['name'] == 'Jack')
assert(u2['name'] == 'Jill')
assert(isinstance(u1['last_seen'], int))
assert(u1['user_id'] == '1')
assert(u2['user_id'] == '2')

When we exit the context, all the structs are saved to Redis in one pipeline operation.
It also automatically loads the other fields in the hash.
Since the commands are batched together, you can write the fields then read the hash in one pass.
If you don’t want it to read, you can set the fields to an empty array.

Accessing the Data

RedPipe exposes the variables from redis as elements like a dictionary:

user = User({'user_id': '1', 'name': 'Jack'})
assert(user['name'] == 'Jack')

Here, we accessed the name field of the redis hash as a dictionary element on the user object.
This data is loaded from redis inside the object on instantiation by calling hgetall() on the key.
The data is cached inside the struct.

You can coerce the objects into dictionaries.

user = User({'user_id': '1', 'name': 'Jack'})
assert(dict(user) == user)

This just takes all the internal data and returns it as a dictionary.
If you don’t define a _key_name on the object, it defaults to the field name ‘_key’.
This primary key is not stored inside the hash. It is embedded in the redis object key name.
This is more efficient that storing it both in the name of the key and as an element of the hash.
It also avoids problems of accidentally creating a mismatch.

You can compare the user Struct to a dictionary for equality.

user = User({'user_id': '1', 'name': 'Jack'})
assert(dict(user) == user)

There is an __eq__ magic method on Struct that allows this comparison.

You can iterate on the object like a dictionary:

user = User({'user_id': '1', 'name': 'Jack'})
assert({k: v for k, v in user.items()} == user)

You can access an unknown data element like you would a dictionary:

user = User({'user_id': '1', 'name': 'Jack'})
assert(user.get('name', 'unknown') == 'Jack')

The get method allows you to pass in a default if no key is found.
It defaults to None.

You can check for key existence:

user = User({'user_id': '1', 'name': 'Jack'})
assert('name' in user)
assert('non-existent-name' not in user)

The magic method __contains__ looks for the key in the internal dictionary, or the _key_name field.

You can check the length of a struct:

user = User({'user_id': '1', 'name': 'Jack'})
assert(len(user) == 2)

This will include the primary key, so it should never be less than 1.
A Struct object will always have a primary key.

You can get the keys of a struct:

user = User({'user_id': '1', 'name': 'Jack'})
returns a list but we don't know the order
coerce to a set for comparison
assert(set(user.keys()) == {'user_id', 'name'})

The _key_name will show up in this list.
If no _key_name is defined, you will see _key in the list of keys.

Many ORMS set the data as attributes of the object.
RedPipe does not.
This makes it easier to differentiate methods of the object from the data.
It also avoids difficulty of data elements that don’t obey the pythonic naming conventions of object attributes.

You can have a element name that would otherwise be illegal.

this wouldn't work, syntax error
user.full-name
but this will!
user['full-name']

Modifying Structs

Let’s read those two users we created and modify them.

with redpipe.autoexec() as pipe:
 users = [User('1', pipe=pipe), User('2', pipe=pipe)]
 ts = int(time.time())
 users[0].update({'name':'Bobby', 'last_seen': ts}, pipe=pipe)
 users[1].remove(['last_seen'])

print([dict(u1), dict(u2)])

When you pass just the key into the object it reads from the database.
Then we can change the fields we want at any point.
Or we can remove fields we no longer want.

Fields that are undefined can still be accessed as basic strings.

We can remove a field and return it like we would popping an item from a dict:

with redpipe.autoexec() as pipe:
 user = User({'user_id': '1', 'name': 'Jack'}, pipe=pipe)
 name = user.pop('name', pipe=pipe)

assert(name == 'Jack')
assert(user.get('name', None) is None)

This doesn’t just pop the data from the local data structure.
It also pops it from redis.
Use at your own risk.

You don’t have to use a pipeline if you don’t want to:

user = User({'user_id': '1', 'name': 'Jack'})
name = user.pop('name')

assert(name == 'Jack')
assert(user.get('name', None) is None)

But then you pay for two network round-trips.

If you want to ensure you don’t modify redis accidentally, coerce your user object into a dictionary.

You can increment a field:

with redpipe.autoexec() as pipe:
 user = User({'user_id': '1', 'name': 'Jack'}, pipe=pipe)
 user.incr('page_views', pipe=pipe)

assert(user['page_views'], 1)

As with the pop example, you can use a pipe or not.
There’s also a decr method which is the inverse.

Using the Underlying Hash

Because the struct is based on a redpipe.Hash object, you can access the underlying Hash.
This is pretty helpful if you need to extend the functionality of your struct.
From our earlier User struct example:

username = User.core().hget('1', 'name')

More on this later.

Deleting Structs

to delete all the data in a struct, use the same syntax as you would for a dictionary:

user = User('1')
user.clear()

Of course you can pipeline it:

with redpipe.autoexec() as pipe:
 user = User('1')
 user.clear(pipe)

If you need to delete a record without loading the record, you can call the Struct class method:

with redpipe.autoexec() as pipe:
 User.delete(['1', '2', '3'], pipe=pipe)

Extra Fields

I touched on it briefly before, but you can store arbitrary data in a struct too.

user = User({'user_id': '1', 'arbitrary_field': 'foo'})
assert(user['arbitrary_field'] == 'foo')

The data will be simple string key-value pairs by default.
But you can add type-casting at any point easily in the fields dictionary.

Temporary Structs

Sometimes you want to be able to use a data structure but you only need it for
a few hours. Redis has the concept of setting an expiry on any key via:

redis-cli EXPIRE key

You can do the same in redis-py and redpipe keyspaces with the expire method.
With structs, many of those low level operations are abstracted away. You can
always access the underlying hash object directly:

User.core().expire('1', 3600)

This feels a little awkward and will be applied inconsistently in your
code. Instead, I recommend using the optional ttl property on the Struct.

class User(redpipe.Struct):
 keyspace = 'U'
 key_name = 'user_id'
 fields = {
 # ...
 }
 ttl = 3600

This will cause the object to expire one hour after it was last updated by
any write operation in the struct.

Why Struct and not Model?

I chose the name Struct because it implies a single, standalone data structure.
You clearly define data structure of the struct.
And you can instantiate the struct with many records.
The word Struct doesn’t imply indexes or one-to-many relationships the way the word Model does.

Why no ORM?

An Object-Relational Mapping can make life much simpler.
Automatic indexes, foreign keys, unique constraints, etc.
It hides all that pesky complexity from you.
If you want a good ORM for redis, check out ROM [http://pythonhosted.org/rom/rom.html#documentation].
Or redish [https://readthedocs.org/projects/redish/].
Both are pretty cool.

RedPipe does not provide you with an ORM solution.

Choose Redpipe if you really care about optimizing your network i/o.

To optimize redis i/o, you need to batch command operations together as much as possible.
ORMs often hide things like automatic unique constraints and indexes beneath the covers.
It bundles lots of multi-step operations together, where one operation feeds another.
That makes it tricky to ensure you are batching those operations efficently as possible over the network.

RedPipe exposes low level redis command primitives.
Inputs and outputs.
This allows you to construct building blocks that can be pipelined efficiently.

Latency

Pipelining isn’t a magic bullet.
If you pipeline 10 thousand commands together, you have to wait until all 10k commands execute and stream back over the wire.

Most of the time, you will find a happy middle ground where 10 or 20 different commands can easily be combined together.
This will make a difference.

When in doubt, profile your code.
Look for the slow spots.
If you dozens or hundreds of network round-trips to redis, RedPipe can help!

Project Status

RedPipe is based on what I’ve learned over the past 3 years.
We run a really big open-source redis cluster where all of our data is stored in Redis.
So these ideas were tested by fire in real production environments.

However, RedPipe is a complete rewrite of the original concepts.
I took the opportunity to write it from scratch, taking advantage of all I learned.
There may be a few bugs that have crept in during this big rewrite and refactor.

That’s not an excuse for sloppy code or mistakes.

I believe in well tested code.
If you find issues, let me know [https://github.com/72squared/redpipe/issues] right away.
I’ll fix it and write a regression test.

Road Map

Here’s my current backlog:

	distributed hash, so we can spread an index out over multiple keys

	better benchmarking

	Tutorials and Examples

Another way of defining the roadmap is listing what I expect NOT to be supported:

	Unique Constraints on Struct

	one-to-many indexes on Struct

	many-to-many indexes on Struct

	required fields on Struct

All of these start forcing me down the road of requiring network i/o in ways that you can’t control.
These operations are best left up to your application logic to handle.

You can still build indexes and unique constraints using redpipe SortedSets, Lists, Sets, Hashes etc.
But you do so separately from Struct as their own first-class objects.

This allows you to access and control the indexes separately from the objects.
Don’t see this as a deficiency in the framework.
See it as a feature.

Open Source Redis Cluster Support

RedPipe supports Redis Cluster.
This became even easier now that redis-py supports redis cluster natively.

import redpipe

r = redis.RedisCluster.from_url('redis://127.0.0.1:7000')

redpipe.connect_redis(r, name='my-cluster')

The reason you can do this is because RedPipe wraps the interface.

If it quacks like a duck …

Error Handling

Redis Pipelining and Errors

RedPipe is opinionated on this point.
When we execute the pipeline, we always raise any errors from the redis client.
Some of your commands may have run.
Others may not.
Any attached callbacks will not be triggered if an exception was raised.
Futures will not have any results populated inside of them.

It is your job as an application developer when using redis to make your API behave in an idempotent way.

One way of handling this is to allow the exception to bubble up.
When the call is retried later, make it pick up where it left off.
Figure out how to repair any prior state and complete the operation.
Also design your application to handle partially written records and handle them appropriately.

Another way is to try to roll back the changes.
This is more difficult.
Frankly I’m not exactly sure how it would work.
I don’t design my own applications this way.
It seems like you could do it.
But there’s also a good chance that the problem that caused the exception may persist.
And that multiple tries one way or another may not be able to restore you to a clean state.
I think it’s a losing battle.

If you choose redis, try to think about error cases and don’t assume all the commands will proceed in lockstep.
Ask yourself what could go wrong, and how might I recover from it when I read this dirty state,

Errors Raised by RedPipe

RedPipe raises exceptions of its own under the following scenarios:

	Trying to access the result of a Future object before it has been received.

	Misconfiguring the pipeline object.

	Invalid data type passed to a defined field in a Hash

Maybe there are others?
Anyway, those are the ones that come to mind.
If you run into an issue and don’t understand it, let me know [https://github.com/72squared/redpipe/issues].
I will update the documentation to help better explain it.

Unicode Support

If you use RedPipe.pipeline objects directly, you are writing raw bytes into redis and reading them out.

Go down a higher level of abstraction in the Keyspaces, and all keys and values are unicode characters stored as utf-8 bytes in redis.
When we read the bytes out of redis we decode them back into strings in python.

Python 3 is much pickier about this. Python 2 doesn’t force you to think about it and often does the right thing, but can be error prone.

I’m no expert at unicode or character encoding so if you see a bug let me know and I’ll try to fix it.

Still working on more tests in this area.

Why not make all of the data utf-8 compliant?

There are some operations, like redis DUMP and redis RESTORE where the binary data shouldn’t be decoded as unicode.
It’s a raw binary data representation.
In other cases you may decide to pickle objects and store them in redis.
RedPipe should be able to support all of this.

This part of the library is less mature than other aspects of the code.

Use at your own risk.

Please report any issues [https://github.com/72squared/redpipe/issues].

Licensing

Copyright (c) 2017 John Loehrer

MIT (See LICENSE file included with the software)

The license should be the same as redis-py [https://github.com/andymccurdy/redis-py].

FAQ

Q: Why am I getting InvalidPipeline?

Have you configured your connection yet?

redis_client = redis.Redis()
redpipe.connect_redis(redis_client)

This will pass the redis connection to redpipe.

Q: I used decode_responses in redis and got an error in redpipe. WTF?

Short answer: I raised an exception on purpose.

I decided to be very opinionated. I don’t want you to do this.

When talking to redis, you don’t know for sure what you are getting.
It might be binary data. It might not.

We wait to decode responses until we are down a layer when we know the data type
of the keyspace we are using and the fields. That allows us to reuse the same connection
to write and read binary data and still decode responses that should be.

If you feel this is wrong, let’s chat.
I’m open to discussion.

Raise it in issues [https://github.com/72squared/redpipe/issues].

Q: Why name it RedPipe? That’s dumb.

Yeah.

I’m not the best at naming things.

Red is short for Redis.
Pipe is short for Pipelining.
Put the two together.
RedPipe.
That’s the sum total of my thought process in naming my module.

Plus, no one had used it yet in PyPi.

:)

Testing

Testing is really important with any code library.
It is especially important when working with database libraries.
So much depends on them.

I try to be as thorough as I can in testing each facet of code.

All of the tests are contained in one file at the root of the repo:

./test.py

I could split it up, but it is convenient at the moment to have all the tests in one file.
And it can find the path to the redpipe package without any special hoops to jump through.

If you see an area that has not been well tested, let me know [https://github.com/72squared/redpipe/issues].

Test Setup

Check out the code from GitHub [https://github.com/72squared/redpipe/].

Open a shell at the root of the repo.

Then type this command:

./activate

This will set up the virtualenv and install all the necessary test packages.

It also puts you in a shell with the virtualenv path declared.

Running the Tests

If you only want to run the test, you can just run the test script:

./test.py

When you are done, hit control-d to exit the shell.

Running Tests Against Supported Python Versions

To go through a more thorough test suite, run:

make test

This will run tox against a bunch of different python versions and print out coverage.
To run this, you need the following python versions installed and discoverable in your path:

	python3.8

	python3.9

This will also print out code coverage statistics and lint tests.

I expect all of these code tests to pass fully before accepting patches to master.

Using Docker to Test

There’s a docker image to help you set up all these versions of python.
It will check them out and run tox.

To run the tests, type:

docker build . -t redpipe && docker run redpipe

If you need to jump in and debug stuff, do:

docker build . -t redpipe && docker run -it redpipe /bin/bash

Building Documentation

To build this documentation, there’s a make command:

make documentation

This will run the sphinx-build command to create the local version of the docs.
The docs are automatically published to Read the Docs [http://redpipe.readthedocs.io/en/latest/].
But it’s handy to build locally before publishing.

Benchmarking

I’d like to write some standardized benchmarks on this stuff.
But writing benchmarks is tricky.

I am confident these optimizations make a big difference.
It has been proven over and over in real-world applications.

Nevertheless, benchmarks are a good idea.

It’s on my list of things to do.

Inspiration

Josiah Carlson deserves some credit.

Long ago I took inspiration from the Redis object mapper [https://github.com/josiahcarlson/rom] project.
I tried to rewrite his library for my purposes and did a pretty bad job of it.
There were some absurd patch requests that were rightly rejected.

:-)

But I learned a lot in the process.
Hopefully I’ve grown as a developer since then.
I didn’t want a full-fledged ORM but there were some excellent ideas there that provided a jumping off point.
RedPipe and Redis Object Mapper have different use-cases.
It is worth checking out.

Disclaimers

RedPipe is based on concepts I have been using in a well-tested production environment for a long time.
But some implementation details are fairly new.

There will be bugs.

Please report all issues here [https://github.com/72squared/redpipe/issues].

I will respond to issues promptly.
Make sure to provide clear explanations of what you are seeing and give steps to reproduce the bug.

Thread Safety

Thread safety is a stated goal of RedPipe.

Redis-Py is considered thread safe by using atomic operations against the GIL when accessing the connection pool.

You should not share objects produced by redpipe.pipeline() between threads.
The main issue you will run into is how it enters and exits the with block, resetting the command stack.
Another issue is ordering of commands.
Frankly, I just haven’t tested this behavior and don’t feel it is important to support it.

You can safely use a different redpipe.pipeline() in each thread after setting up your connection.
This is because when the redpipe.pipeline() object executes, it obtains a new redis.pipeline() object to pass the commands into.
That redis-py pipeline object queues all the commands and then obtains a connection from its pool in a thread-safe way.
Then it packs the commands and sends it over the wire and waits for the response before releasing it back into the connection pool.

If you see any symptoms of unsafe thread behavior, please report it here [https://github.com/72squared/redpipe/issues].

Character Encoding

To be honest, I never spent a whole lot of time thinking about character encoding in redis until recently.
Most of the values I manipulate in redis are numbers and simple ascii keys.
When I wrote this library originally for python 2, it doesn’t make you think about character
encoding vs bytes much at all.
However, I think a good library should fully support proper character encoding.
And since RedPipe is fully tested on python 3, I am making more of an effort to understand the nuances.

If you find a bug, Please report it.

Lua Scripting

Lua scripting is only barely supported in redis cluster.
You can make it work if you don’t bother with script registration or evalsha.
That’s because it is too hard to know for sure when running a command whether or not the node in the cluster will have it already.
And it gets especially complicated in pipeline scenarios and pipelined failover scenarios.

So, we choose to always send the full lua script every time.
If you use short lua scripts like I do, it’s not a big deal.
the network penalty of bytes over the wire is small compared with the penalty of multiple network round-trips.
And on the redis server, it keeps an internal hash of the compiled lua script.
So there’s no additional compilation penalty with sending the Lua script every time.

I know it’s not quite as nice this way.
But at least it is functional.
If you have any ideas on how to make this better, let me know.

Contributing

I welcome new ideas.
And bug fixes.
But I want to keep RedPipe clear and focused.
Code bloat stinks.

The changes submitted should adhere to the following principles:

	modular component that does one job well

	allows for efficient network i/o talking to redis

	doesn’t nest network round-trips that defeat the point of pipelining

	exposes the power of the redis API first and foremost

	KISS: keep it simple, stupid!

If any individual component starts to feel really complex, it’s time to break it up.
Or time to cut it.

For a patch to be accepted, it must pass all the unit tests and flake8 tests.
It should do so for all supported versions of python.

That said, I’m happy to take rough patch requests and make them suitable for merging if the idea is good.
And of course, I’m happy to give credit where it is due.

Release Notes

4.0.1 (December 28, 2022)

Modify Protocol import to allow python 3.7 to work.

4.0.0 (December 27, 2022)

Add support for type hints. Remove any python 2 references.
Remove dependency on “six” library now that only python3 is supported.

3.0.1 (December 26, 2022)

Update the docs to reflect deprecation of redis-py-cluster.
Use redis-py instead.

3.0.0 (December 26, 2022)

Maintain compatibility with latest version of redis-py,
now that it natively supports redis cluster.

2.3.6 (October 30, 2019)

Bugfix. enable_threads and disable_threads behavior were swapped.
Added a test to confirm correct behavior.

2.3.5 (July 3, 2019)

Fixing an issue where iterators getting passed in to multi key operations
were being treated as a single key.

2.3.4 (June 24, 2019)

StringListField should return an empty string for an empty list encoding.
Sending None to the redis results in bad stuff.

2.3.3 (June 21, 2019)

Relaxing validation for fields a little bit and try to just do the right thing.
Only blow up if we really can’t coerce to what we think is a correct value.

2.3.2 (June 19, 2019)

Make IntegerField a little more forgiving and allow float values to be passed
in. Auto-convert to integers. Makes lots of things easier.

2.3.1 (Nov 29, 2018)

Introduce Keyspace.super_pipe property.
Allows multiple pipelined functions to share the same parent pipeline.
Don’t use this unless you know what you’re doing. We will work out the
documentation as we explore the need for this further
and standardize the api.

2.3.0 (Nov 28, 2018)

Bug fix: pickling future objects with a result that evaluates to false causes
unpickling to not call __setstate__. This causes the future to raise an exception
on unpickling when trying to use the future result because no state has been set.

	In python documentation it states:

	“Note For new-style classes, if __getstate__() returns a false value,
the __setstate__() method will not be called.”

reference: https://docs.python.org/3/library/pickle.html

The fix is to return a dictionary with the result in __getstate__ and expect one
in __setstate__ so the value never evaluates to false.

2.2.0 (Aug 14, 2018)

z[rev]range[byscore] functions should return list of tuples instead of list of lists.
fix provided by Max Greenblatt, thanks!
This makes the interface more closely match the behavior in redis-py which acts
as a reference spec for redpipe commands. This is a minor change and probably won’t
break anything on the client, but incrementing the minor version, just in case.

2.1.2 (July 17, 2018)

enable key by name as attribute.

2.1.1 (July 13, 2018)

If you set field_attr_on to true on a Struct, you can
access fields as attributes of the struct. Not recommended,
but there may be certain cases where it can be desirable.
Use with caution.

2.1.0 (July 11, 2018)

Support for Strings stored in a sharded Hash.
Adding mget on String keyspace data.
adding required fields and defaults on struct.

2.0.2 (May 23, 2018)

rename _memberparse to memberparse on Hash class to be consistent
with naming conventions of keyparse and valueparse variables.
Also allows access of this variable outside the class which is fine.

2.0.1 (March 15, 2018)

ttl on struct objects.
documentation fixes.

2.0.0 (March 8, 2018)

to avoid confusion, make the eval command in keyspaces match the
interface defined in redis-py.

1.0.4 (September 28, 2017)

adding support for zcount (somehow missed it before).

1.0.3 (August 10, 2017)

fixing a bug in named connections in structs and keyspaces. fixes issue #2

1.0.2 (June 23, 2017)

enable pfcount when using rediscluster.

1.0.1 (May 29, 2017

adding an nx option to struct to allow changes to be set only if the properties
don’t already exist.

1.0.0 (May 11, 2017

No substantive changes from 1.0.0rc3.
Updating notes and removing beta flags.

1.0.0rc3 (May 10, 2017)

Use threads by default when talking to multiple backends in the same pipeline.
You can disable this behavior with redpipe.disable_threads().

1.0.0rc2 (May 9, 2017)

Minor changes.

	make the keyspace object call conform to redis-py

	use twine to publish to pypi

	publish wheels

1.0.0rc1 (May 7, 2017)

This marks the first RC.
There are a few breaking changes, mostly easily fixed.

	better handling of Nones returned from hmget in Struct

	testing with toxiproxy to simulate slower networks in benchmarks

	using pytest-benchmark tool for benchmark comparisons

	simplifying connections so we can pass in redis or rediscluster

	fixing some compat issues with redis-py interface

0.5.0 (May 5, 2017)

More breaking changes to Struct.
Solidifying the api.
Making important simplifications.
This will make it easier to explain and document.

	Struct and Keyspace: simplifying some variable names

	Struct: support a no_op flag to prevent read/write from redis

	Struct: no kwargs as properties of struct. a dict models it better

	Struct: specify fields to load when instantiating

	Struct: reuse remove logic in the update function for elements set to None

	Simplifying task wait and promise to use the TaskManager directly

	Future: better isinstance and is comparison checks

	make it easier to build docs

	adding Docker support for testing many versions of python

0.4.0 (May 4, 2017)

	by default, don’t use transactions

	autocommit flag renamed to autoexec. Breaking change.

	support pickling Struct

	make repr(Struct) more standard

	cleaner connection and pipeline interfaces

	verify redis cluster support with a single-node redis cluster via redislite

0.3.2 (May 3, 2017)

After experimenting with some things, simplifying Struct back down.
Some of the methods in Struct will break.
Easier to explain with fewer methods and can still do everything I need to.

	cleaner support for items and iteritems in struct

	support for delete in struct

	fixed a bug with deleting multiple keys in Keyspace objects.

	simplification on json serialization detection

	test flake8 on travis

	test with hiredis

This release also improves the documentation on Struct.
I hadn’t bothered much up until this point.
The interface was still solidifying.
Starting to get to a stable place there.

0.3.1 (May 2, 2017)

Breaking changes in this release as well.
Can only access data from a struct object like you would a dictionary.
This is an important step because it disambiguates commands from data.
And it enforces one consistent way to access data.
All the methods on the Struct give it a dictionary interface.
Easier to explain the mental model this way.

	Improvements to redpipe.Struct.

	Documentation improvements.

0.3.0 (April 30, 2017)

BIG REFACTOR.
key no longer part of the constructor of Keyspace objects.
Instead, you pass the key name to the method.
This keeps the api identical in arguments in redis-py.
It also allows me to support multi-key operations.
This is a breaking change.

	no need for a compat layer, using six

	standardize key, value, member encoding & decoding by reusing Field interface

	key no longer part of the constructor of Keyspace objects

0.2.5 (April 30, 2017)

	support for binary field

	improving encoding and decoding in Keyspaces

	alias iteritems to items on struct

	make fields use duck-typing to validate instead of using isinstance

0.2.4 (April 28, 2017)

	better interface for async enable/disable.

	add ability to talk to multiple redis servers in parallel via threads

0.2.3 (April 27, 2017)

	renaming datatypes to keyspaces. easier to explain.

	moving documentation from readme into docs/ for readthedocs.

	support for ascii field

0.2.2 (April 26, 2017)

	better support and testing of redis cluster

	support for hyperloglog data type

	adding support for more complex field types

	support sortedset lex commands

	support for scanning

0.2.1 (April 24, 2017)

	bug fix: make sure accessing result before ready results in a consistent exception type.

	bug fix: issue when exiting with statement from python cli

0.2.0 (April 24, 2017)

	make the deferred object imitate the underlying result

0.1.1 (April 23, 2017)

	make it possible to typecast fields in the Hash data type

	better support for utf-8

	make result object traceback cleaner

0.1.0 (April 21, 2017)

	better pipelining and task management

	better support for multi pipeline use case

Old Releases

Releases prior to 1.0.0 are considered beta.
The api is not officially supported.
We make no guarantees about backward compatibility.

Releases less than 0.1.0 in this project are considered early alpha and don’t deserve special mention.

Project Authors

Lead author and maintainer: John Loehrer - https://github.com/72squared

If you contribute to this project I will be happy to mention you.

redpipe package

Redpipe makes redis pipelines easier to use in python.

Usage:

import redpipe
import redis

redpipe.connect_redis(redis.Redis())
with redpipe.pipeline() as pipe:
 foo = pipe.incr('foo')
 bar = pipe.incr('bar)
 pipe.execute()
print([foo, bar])

Module Structure

This is the structure of the top level of the package, grouped by category.

Connections

	connect_redis

	disconnect

	reset

	pipeline

	autoexec

Fields

	IntegerField

	FloatField

	TextField

	AsciiField

	BinaryField

	BooleanField

	ListField

	DictField’,

	StringListField

Keyspaces

	String

	Set

	List

	SortedSet

	Hash

	HyperLogLog

Exceptions

	Error

	ResultNotReady

	InvalidOperation

	InvalidValue

	AlreadyConnected

	InvalidPipeline

Misc

	Future

	Struct

	enable_threads

	disable_threads

You shouldn’t need to import the submodules directly.

Submodules

redpipe.connections module

Bind instances of the redis-py client to redpipe.
Assign named connections to be able to talk to multiple redis servers in your
project.

The ConnectionManager is a singleton class.

These functions are all you will need to call from your code:

	connect_redis

	disconnect

	reset

Everything else is for internal use.

	
redpipe.connections.connect_redis(redis_client, name=None, transaction=False) → None

	Connect your redis-py instance to redpipe.

Example:

redpipe.connect_redis(redis.Redis(), name='users')

Do this during your application bootstrapping.

You can also pass a redis cluster instance to this method.

redpipe.connect_redis(redis.RedisCluster(), name='users')

You are allowed to pass in any redis-py client instance.

redpipe.connect_redis(redis.Redis(), name='a')
redpipe.connect_redis(redis.RedisCluster(...), name='b')

	Parameters

	
	redis_client –

	name – nickname you want to give to your connection.

	transaction –

	Returns

	

	
redpipe.connections.disconnect(name: Optional[str] = None) → None

	remove a connection by name.
If no name is passed in, it assumes default.

redpipe.disconnect('users')
redpipe.disconnect()

Useful for testing.

	Parameters

	name –

	Returns

	None

	
redpipe.connections.reset() → None

	remove all connections.

redpipe.reset()

Useful for testing scenarios.

Not sure when you’d want to call this explicitly
unless you need an explicit teardown of your application.
In most cases, python garbage collection will do the right thing
on shutdown and close all the redis connections.

	Returns

	None

redpipe.exceptions module

This module contains the set of all of redpipe exceptions.

	
exception redpipe.exceptions.Error

	Bases: Exception

Base class for all redpipe errors

	
exception redpipe.exceptions.ResultNotReady

	Bases: redpipe.exceptions.Error

Raised when you access a data from a Future before it is assigned.

	
exception redpipe.exceptions.InvalidOperation

	Bases: redpipe.exceptions.Error

Raised when trying to perform an operation disallowed by the redpipe api.

	
exception redpipe.exceptions.InvalidValue

	Bases: redpipe.exceptions.Error

Raised when data assigned to a field is the wrong type

	
exception redpipe.exceptions.AlreadyConnected

	Bases: redpipe.exceptions.Error

raised when you try to connect and change the ORM connection
without explicitly disconnecting first.

	
exception redpipe.exceptions.InvalidPipeline

	Bases: redpipe.exceptions.Error

raised when you try to use a pipeline that isn’t configured correctly.

redpipe.fields module

A module for marshalling data in and out of redis and back into the python
data type we expect.

Used extensively in the redpipe.keyspaces module for type-casting keys and
values.

	
class redpipe.fields.IntegerField

	Bases: object

Used for integer numeric fields.

	
classmethod decode(value: Optional[bytes]) → Optional[int]

	read bytes from redis and turn it back into an integer.

	Parameters

	value – bytes

	Returns

	int

	
classmethod encode(value: int) → bytes

	take an integer and turn it into a string representation
to write into redis.

	Parameters

	value – int

	Returns

	str

	
class redpipe.fields.FloatField

	Bases: object

Numeric field that supports integers and floats (values are turned into
floats on load from persistence).

	
classmethod decode(value: Optional[bytes]) → Optional[float]

	decode the bytes from redis back into a float

	Parameters

	value – bytes

	Returns

	float

	
classmethod encode(value: float) → bytes

	encode a floating point number to bytes in redis

	Parameters

	value – float

	Returns

	bytes

	
class redpipe.fields.TextField

	Bases: object

A unicode string field.

Encoded via utf-8 before writing to persistence.

	
classmethod decode(value: Optional[bytes]) → Optional[str]

	take bytes from redis and turn them into unicode string

	Parameters

	value –

	Returns

	

	
classmethod encode(value: str) → bytes

	take a valid unicode string and turn it into utf-8 bytes

	Parameters

	value – unicode, str

	Returns

	bytes

	
class redpipe.fields.AsciiField

	Bases: redpipe.fields.TextField

Used for ascii-only text

	
PATTERN = re.compile('^([-~]+)?$')

	

	
classmethod encode(value: str) → bytes

	take a list of strings and turn it into utf-8 byte-string

	Parameters

	value –

	Returns

	

	
class redpipe.fields.BinaryField

	Bases: object

A bytes field. Not encoded.

	
classmethod decode(value: Optional[bytes]) → Optional[bytes]

	read binary data from redis and pass it on through.

	Parameters

	value – bytes

	Returns

	bytes

	
classmethod encode(value: bytes) → bytes

	write binary data into redis without encoding it.

	Parameters

	value – bytes

	Returns

	bytes

	
class redpipe.fields.BooleanField

	Bases: object

Used for boolean fields.

	
classmethod decode(value: Optional[bytes]) → Optional[bool]

	convert from redis bytes into a boolean value

	Parameters

	value – bytes

	Returns

	bool

	
classmethod encode(value: bool) → bytes

	convert a boolean value into something we can persist to redis.
An empty string is the representation for False.

	Parameters

	value – bool

	Returns

	bytes

	
classmethod is_true(val)

	

	
class redpipe.fields.ListField

	Bases: object

A list field. Marshalled in and out of redis via json.
Values of the list can be any arbitrary data.

	
classmethod decode(value: Union[bytes, None, list]) → Optional[list]

	take a utf-8 encoded byte-string from redis and
turn it back into a list

	Parameters

	value – bytes

	Returns

	list

	
classmethod encode(value: list) → bytes

	take a list and turn it into a utf-8 encoded byte-string for redis.

	Parameters

	value – list

	Returns

	bytes

	
class redpipe.fields.DictField

	Bases: object

	
classmethod decode(value: Union[bytes, None, dict]) → Optional[dict]

	decode the data from a json string in redis back into a dict object.

	Parameters

	value – bytes

	Returns

	dict

	
classmethod encode(value: dict) → bytes

	encode the dict as a json string to be written into redis.

	Parameters

	value – dict

	Returns

	bytes

	
class redpipe.fields.StringListField

	Bases: object

Used for storing a list of strings, serialized as a comma-separated list.

	
classmethod decode(value: Union[bytes, None, List[str]]) → Optional[List[str]]

	decode the data from redis.
:param value: bytes
:return: list

	
classmethod encode(value: List[str]) → bytes

	encode the list it so it can be stored in redis.

	Parameters

	value – list

	Returns

	bytes

	
class redpipe.fields.Field(*args, **kwargs)

	Bases: typing_extensions.Protocol, typing.Generic

	
classmethod decode(value: Optional[bytes]) → Optional[T]

	

	
classmethod encode(value: T) → bytes

	

redpipe.futures module

The Future() object in RedPipe gives us the ability to make the pipeline
interface of redis-py look like the non-pipelined interface.
You call a command and get a response back.
Only the response is not the actual data.
It is an empty container called a Future.
There is a callback attached to that empty container.
When the pipeine is executed, the pipeline injects the response into the
container.

This Future container is a very special kind of python object.
It can imitate anything it contains.
If there is an integer inside, it behaves like an integer.
If it holds a dictionary, it behaves like a dictionary.
If it holds a list, it behaves like a list.
Your application should be able to use it interchangeably.

There are a few gotchas to watch out for:

	isinstance() checks

	identity checks like: future is None

	trying to mutate the object like this: future += 1

You can always type cast the object into the type you expect
if you need this behavior.

f = Future()
f.set(1)

f is 1 fails
assert(int(f) is 1)

This doesn’t work so well for is None checks.
You can use equality checks though.
Or you can use our handy IS method.
Or you can access the underlying result

f = Future()
f.set(None)

assert(f == None)
assert(f.IS(None))
assert(f.result is None)

Hope that helps.

Other than those few caveats, you should be able to access a future object
just like the underlying result.

Here are some examples if your result is numeric.

future = Future()
future.set(1)
assert(future == 1)
assert(future != 2)
assert(bool(future))
assert(float(future) == 1.0)
assert(future + 1 == 2)
assert(future * 2 == 2)
assert(future ^ 1 == 0)
assert(repr(future) == '1')

And here is an example if your future is a list:

future = Future()
future.set([1])
assert(future == [1])
assert([v for v in future] == [1])
assert(future + [2] == [1, 2])

And here is a dictionary:

future = Future()
future.set({'a': 1})
assert(future == {'a': 1})
assert(dict(future) == {'a': 1})
assert({k: v for k, v in future.items()} == {'a': 1})

There are many more operations supported but these are the most common.
Let me know [https://github.com/72squared/redpipe/issues] if you need
more examples or explanation.

	
class redpipe.futures.Future

	Bases: typing.Generic

An object returned from all our Pipeline calls.

	
IS(other) → bool

	Allows you to do identity comparisons on the underlying object.

	Parameters

	other – Mixed

	Returns

	bool

	
id()

	Get the object id of the underlying result.

	
isinstance(other) → bool

	allows you to check the instance type of the underlying result.

	Parameters

	other –

	Returns

	

	
result

	Get the underlying result.
Usually one of the data types returned by redis-py.

	Returns

	None, str, int, list, set, dict

	
set(data: T)

	Write the data into the object.
Note that I intentionally did not declare result in
the constructor.
I want an error to happen if you try to access it
before it is set.

	Parameters

	data – any python object

	Returns

	None

	
redpipe.futures.IS(instance, other)

	Support the future is other use-case.
Can’t override the language so we built a function.
Will work on non-future objects too.

	Parameters

	
	instance – future or any python object

	other – object to compare.

	Returns

	

	
redpipe.futures.ISINSTANCE(instance, A_tuple)

	Allows you to do isinstance checks on futures.
Really, I discourage this because duck-typing is usually better.
But this can provide you with a way to use isinstance with futures.
Works with other objects too.

	Parameters

	
	instance –

	A_tuple –

	Returns

	

redpipe.keyspaces module

This module provides a way to access keys grouped under a certain keyspace.
A keyspace is a convention used often in redis where many keys are grouped
logically together.
In the SQL world, you could think of this as a table.
But in redis each key is independent whereas a record in a table is controlled
by the schema.

Examples of a group of keys in a keyspace:

	user{A}

	user{B}

	user{C}

It is inconvient to refer to keys this way.
The identifiers for our user records are A, B, C.
In addition, we usually know that a user record is always a redis hash.
And we know that it has certain fields that have different data types.

These keyspace classes in this module allow you to easily manipulate
these keys.

redpipe.connect_redis(redis.Redis(
 # connection params go here.
), name='user_redis_db')

class User(redpipe.Hash):
 keyspace = 'user'
 fields = {
 'name': redpipe.TextField,
 'created_at': redpipe.TextField,
 }
 connection = 'user_redis_db'

user_a = User().hgetall('A')

This Keyspace object exposes all the hash-related redis commands as normal.
Internally, it rewrites the key name to be ‘user{A}’ for you automatically.
You can pass in a pipeline to the constructor.
No matter what pipeline you pass in, it routes your commands to the
user_redis_db that you set up.

There’s also support for character encoding and complex data types.

	
class redpipe.keyspaces.String(pipe: Optional[redpipe.pipelines.PipelineInterface] = None)

	Bases: redpipe.keyspaces.Keyspace

Manipulate a String key in Redis.

	
append(name: str, value: str) → redpipe.futures.Future

	Appends the string value to the value at key. If key
doesn’t already exist, create it with a value of value.
Returns the new length of the value at key.

	Parameters

	
	name – str the name of the redis key

	value – str

	Returns

	Future()

	
bitcount(name, start=None, end=None) → redpipe.futures.Future

	Returns the count of set bits in the value of key. Optional
start and end paramaters indicate which bytes to consider

	Parameters

	
	name – str the name of the redis key

	start – int

	end – int

	Returns

	Future()

	
get(name: str) → redpipe.futures.Future[str][str]

	Return the value of the key or None if the key doesn’t exist

	Parameters

	name – str the name of the redis key

	Returns

	Future()

	
getbit(name: str, offset: int) → redpipe.futures.Future

	Returns a boolean indicating the value of offset in key

	Parameters

	
	name – str the name of the redis key

	offset – int

	Returns

	Future()

	
incr(name: str, amount: int = 1) → redpipe.futures.Future

	increment the value for key by 1

	Parameters

	
	name – str the name of the redis key

	amount – int

	Returns

	Future()

	
incrby(name: str, amount: int = 1) → redpipe.futures.Future

	increment the value for key by value: int

	Parameters

	
	name – str the name of the redis key

	amount – int

	Returns

	Future()

	
incrbyfloat(name: str, amount: float = 1.0) → redpipe.futures.Future

	increment the value for key by value: float

	Parameters

	
	name – str the name of the redis key

	amount – int

	Returns

	Future()

	
mget(keys: Union[str, List[str]], *args) → redpipe.futures.Future

	Returns a list of values ordered identically to keys

	
psetex(name: str, value: str, time_ms: int) → redpipe.futures.Future

	Set the value of key name to value that expires in time_ms
milliseconds. time_ms can be represented by an integer or a Python
timedelta object

	
set(name: str, value: str, ex: Optional[int] = None, px: Optional[int] = None, nx: bool = False, xx: bool = False) → redpipe.futures.Future

	Set the value at key name to value

ex sets an expire flag on key name for ex seconds.

px sets an expire flag on key name for px milliseconds.

nx if set to True, set the value at key name to value if it
does not already exist.

xx if set to True, set the value at key name to value if it
already exists.

	Returns

	Future()

	
setbit(name: str, offset: int, value: str) → redpipe.futures.Future

	Flag the offset in the key as value. Returns a boolean
indicating the previous value of offset.

	Parameters

	
	name – str the name of the redis key

	offset – int

	value –

	Returns

	Future()

	
setex(name: str, value: str, time: int) → redpipe.futures.Future

	Set the value of key to value that expires in time
seconds. time can be represented by an integer or a Python
timedelta object.

	Parameters

	
	name – str the name of the redis key

	value – str

	time – secs

	Returns

	Future()

	
setnx(name: str, value: str) → int

	Set the value as a string in the key only if the key doesn’t exist.

	Parameters

	
	name – str the name of the redis key

	value –

	Returns

	Future()

	
setrange(name: str, offset: int, value: str) → redpipe.futures.Future

	Overwrite bytes in the value of name starting at offset with
value. If offset plus the length of value exceeds the
length of the original value, the new value will be larger
than before.
If offset exceeds the length of the original value, null bytes
will be used to pad between the end of the previous value and the start
of what’s being injected.

Returns the length of the new string.
:param name: str the name of the redis key
:param offset: int
:param value: str
:return: Future()

	
strlen(name: str) → redpipe.futures.Future

	Return the number of bytes stored in the value of the key

	Parameters

	name – str the name of the redis key

	Returns

	Future()

	
substr(name: str, start: int, end: int = -1) → redpipe.futures.Future[str][str]

	Return a substring of the string at key name. start and end
are 0-based integers specifying the portion of the string to return.

	Parameters

	
	name – str the name of the redis key

	start – int

	end – int

	Returns

	Future()

	
class redpipe.keyspaces.HashedString(pipe: Optional[redpipe.pipelines.PipelineInterface] = None)

	Bases: object

	
classmethod core(pipe: Optional[redpipe.pipelines.PipelineInterface] = None)

	

	
delete(key: str, *args) → redpipe.futures.Future[int][int]

	

	
get(key: str) → redpipe.futures.Future

	Return the value of the key or None if the key doesn’t exist

	Parameters

	key – str the name of the redis key

	Returns

	Future()

	
incr(name: str, amount: int = 1) → redpipe.futures.Future

	increment the value for key by 1

	Parameters

	
	name – str the name of the redis key

	amount – int

	Returns

	Future()

	
incrby(name: str, amount: int = 1) → redpipe.futures.Future

	increment the value for key by value: int

	Parameters

	
	name – str the name of the redis key

	amount – int

	Returns

	Future()

	
incrbyfloat(name: str, amount: float = 1.0) → redpipe.futures.Future

	increment the value for key by value: float

	Parameters

	
	name – str the name of the redis key

	amount – int

	Returns

	Future()

	
mget(keys: Union[str, List[str]], *args) → redpipe.futures.Future

	Returns a list of values ordered identically to keys

	
pipe

	Get a fresh pipeline() to be used in a with block.

	Returns

	Pipeline or NestedPipeline with autoexec set to true.

	
scan_iter(match=None, count=None) → Iterable[T_co]

	Make an iterator using the hscan command so that the client doesn’t
need to remember the cursor position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
set(name: str, value: str, nx: bool = False) → redpipe.futures.Future

	Set the value at key name to value

nx if set to True, set the value at key name to value if it
does not already exist.

	Returns

	Future()

	
setnx(name, value) → redpipe.futures.Future

	Set the value as a string in the key only if the key doesn’t exist.

	Parameters

	
	name – str the name of the redis key

	value –

	Returns

	Future()

	
classmethod shard(key: str)

	

	
shard_count = 64

	

	
strlen(name: str) → redpipe.futures.Future

	Return the number of bytes stored in the value of the key

	Parameters

	name – str the name of the redis key

	Returns

	Future()

	
class redpipe.keyspaces.Set(pipe: Optional[redpipe.pipelines.PipelineInterface] = None)

	Bases: redpipe.keyspaces.Keyspace

Manipulate a Set key in redis.

	
sadd(name: str, values: Union[str, List[str]], *args) → redpipe.futures.Future

	Add the specified members to the Set.

	Parameters

	
	name – str the name of the redis key

	values – a list of values or a simple value.

	Returns

	Future()

	
scard(name: str) → redpipe.futures.Future

	How many items in the set?

	Parameters

	name – str the name of the redis key

	Returns

	Future()

	
sdiff(keys: Union[str, List[str]], *args) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	Return the difference of sets specified by keys

	Parameters

	
	keys – list

	args – tuple

	Returns

	Future()

	
sdiffstore(dest: str, *keys) → redpipe.futures.Future

	Store the difference of sets specified by keys into a new
set named dest. Returns the number of keys in the new set.

	
sinter(keys, *args) → redpipe.futures.Future[typing.List[str]][List[str]]

	Return the intersection of sets specified by keys

	Parameters

	
	keys – list or str

	args – tuple

	Returns

	Future

	
sinterstore(dest: str, keys: Union[str, List[str]], *args) → redpipe.futures.Future

	Store the intersection of sets specified by keys into a new
set named dest. Returns the number of keys in the new set.

	
sismember(name: str, value: str) → redpipe.futures.Future

	Is the provided value is in the Set?

	Parameters

	
	name – str the name of the redis key

	value – str

	Returns

	Future()

	
smembers(name: str) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	get the set of all members for key

	Parameters

	name – str the name of the redis key

	Returns

	

	
spop(name: str) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	Remove and return (pop) a random element from the Set.

	Parameters

	name – str the name of the redis key

	Returns

	Future()

	
srandmember(name: str, number: Optional[int] = None) → redpipe.futures.Future[typing.Any][Any]

	Return a random member of the set.

	Parameters

	
	name – str the name of the redis key

	number – optional int

	Returns

	Future()

	
srem(name: str, *values) → redpipe.futures.Future

	Remove the values from the Set if they are present.

	Parameters

	
	name – str the name of the redis key

	values – a list of values or a simple value.

	Returns

	Future()

	
sscan(name: str, cursor: int = 0, match: Optional[str] = None, count: Optional[int] = None) → redpipe.futures.Future[typing.Tuple[int, typing.List[typing.Any]]][Tuple[int, List[Any]]]

	Incrementally return lists of elements in a set. Also return a cursor
indicating the scan position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	Parameters

	
	name – str the name of the redis key

	cursor – int

	match – str

	count – int

	
sscan_iter(name: str, match: Optional[str] = None, count: Optional[int] = None) → Iterable[T_co]

	Make an iterator using the SSCAN command so that the client doesn’t
need to remember the cursor position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	Parameters

	
	name – str the name of the redis key

	match – str

	count – int

	
sunion(keys: Union[str, List[str]], *args) → redpipe.futures.Future[typing.List[str]][List[str]]

	Return the union of sets specified by keys

	Parameters

	
	keys – list or str

	args – tuple

	Returns

	Future()

	
sunionstore(dest: str, keys: Union[str, List[str]], *args) → redpipe.futures.Future

	Store the union of sets specified by keys into a new
set named dest. Returns the number of members in the new set.

	
class redpipe.keyspaces.List(pipe: Optional[redpipe.pipelines.PipelineInterface] = None)

	Bases: redpipe.keyspaces.Keyspace

Manipulate a List key in redis

	
blpop(keys: Union[str, List[str]], timeout: int = 0) → redpipe.futures.Future[typing.Union[typing.Tuple[str, typing.Any], NoneType]][Optional[Tuple[str, Any]]]

	LPOP a value off of the first non-empty list
named in the keys list.

If none of the lists in keys has a value to LPOP, then block
for timeout seconds, or until a value gets pushed on to one
of the lists.

If timeout is 0, then block indefinitely.

	
brpop(keys: Union[str, List[str]], timeout: int = 0) → redpipe.futures.Future[typing.Union[typing.Tuple[str, typing.Any], NoneType]][Optional[Tuple[str, Any]]]

	RPOP a value off of the first non-empty list
named in the keys list.

If none of the lists in keys has a value to LPOP, then block
for timeout seconds, or until a value gets pushed on to one
of the lists.

If timeout is 0, then block indefinitely.

	
brpoplpush(src: str, dst: str, timeout: int = 0) → redpipe.futures.Future[typing.Union[typing.Tuple[str, typing.Any], NoneType]][Optional[Tuple[str, Any]]]

	Pop a value off the tail of src, push it on the head of dst
and then return it.

This command blocks until a value is in src or until timeout
seconds elapse, whichever is first. A timeout value of 0 blocks
forever.

	
lindex(name: str, index: int) → redpipe.futures.Future[typing.Any][Any]

	Return the value at the index idx

	Parameters

	
	name – str the name of the redis key

	index – the index to fetch the value.

	Returns

	Future()

	
llen(name: str) → redpipe.futures.Future[int][int]

	Returns the length of the list.

	Parameters

	name – str the name of the redis key

	Returns

	Future()

	
lpop(name: str) → redpipe.futures.Future[typing.Any][Any]

	Pop the first object from the left.

	Parameters

	name – str the name of the redis key

	Returns

	Future()

	
lpush(name: str, *values) → redpipe.futures.Future[int][int]

	Push the value into the list from the left side

	Parameters

	
	name – str the name of the redis key

	values – a list of values or single value to push

	Returns

	Future()

	
lrange(name: str, start: int, stop: int) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	Returns a range of items.

	Parameters

	
	name – str the name of the redis key

	start – integer representing the start index of the range

	stop – integer representing the size of the list.

	Returns

	Future()

	
lrem(name: str, value: str, num: int = 1) → redpipe.futures.Future[int][int]

	Remove first occurrence of value.

Can’t use redis-py interface. It’s inconstistent between
redis.Redis and redis.Redis in terms of the kwargs.
Better to use the underlying execute_command instead.

	Parameters

	
	name – str the name of the redis key

	num –

	value –

	Returns

	Future()

	
lset(name: str, index: int, value: str) → redpipe.futures.Future

	Set the value in the list at index idx

	Parameters

	
	name – str the name of the redis key

	index –

	value –

	Returns

	Future()

	
ltrim(name: str, start: int, end: int) → redpipe.futures.Future

	Trim the list from start to end.

	Parameters

	
	name – str the name of the redis key

	start –

	end –

	Returns

	Future()

	
rpop(name: str) → redpipe.futures.Future[typing.Any][Any]

	Pop the first object from the right.

	Parameters

	name – str the name of the redis key

	Returns

	the popped value.

	
rpoplpush(src: str, dst: str) → redpipe.futures.Future[typing.Any][Any]

	RPOP a value off of the src list and atomically LPUSH it
on to the dst list. Returns the value.

	
rpush(name: str, *values) → redpipe.futures.Future

	Push the value into the list from the right side

	Parameters

	
	name – str the name of the redis key

	values – a list of values or single value to push

	Returns

	Future()

	
class redpipe.keyspaces.SortedSet(pipe: Optional[redpipe.pipelines.PipelineInterface] = None)

	Bases: redpipe.keyspaces.Keyspace

Manipulate a SortedSet key in redis.

	
zadd(name: str, members: Union[str, List[str]], score: float = 1.0, nx: bool = False, xx: bool = False, ch: bool = False, incr: bool = False) → redpipe.futures.Future

	Add members in the set and assign them the score.

	Parameters

	
	name – str the name of the redis key

	members – a list of item or a single item

	score – the score the assign to the item(s)

	nx –

	xx –

	ch –

	incr –

	Returns

	Future()

	
zcard(name: str) → redpipe.futures.Future[int][int]

	Returns the cardinality of the SortedSet.

	Parameters

	name – str the name of the redis key

	Returns

	Future()

	
zcount(name: str, min: float, max: float) → redpipe.futures.Future[int][int]

	Returns the number of elements in the sorted set at key name with
a score between min and max.

	Parameters

	
	name – str

	min – float

	max – float

	Returns

	Future()

	
zincrby(name: str, value: Any, amount: float = 1.0) → redpipe.futures.Future

	Increment the score of the item by value

	Parameters

	
	name – str the name of the redis key

	value –

	amount –

	Returns

	

	
zlexcount(name: str, min: float, max: float) → redpipe.futures.Future[int][int]

	Return the number of items in the sorted set between the
lexicographical range min and max.

	Parameters

	
	name – str the name of the redis key

	min – int or ‘-inf’

	max – int or ‘+inf’

	Returns

	Future()

	
zrange(name: str, start: int, end: int, desc: bool = False, withscores: bool = False, score_cast_func: Callable = <class 'float'>) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	Returns all the elements including between start (non included)
and stop (included).

	Parameters

	
	name – str the name of the redis key

	start –

	end –

	desc –

	withscores –

	score_cast_func –

	Returns

	

	
zrangebylex(name: str, min: float, max: float, start: Optional[int] = None, num: Optional[int] = None) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	Return the lexicographical range of values from sorted set name
between min and max.

If start and num are specified, then return a slice of the
range.

	Parameters

	
	name – str the name of the redis key

	min – int or ‘-inf’

	max – int or ‘+inf’

	start – int

	num – int

	Returns

	Future()

	
zrangebyscore(name: str, min: float, max: float, start: Optional[int] = None, num: Optional[int] = None, withscores: bool = False, score_cast_func: Callable = <class 'float'>) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	Returns the range of elements included between the scores (min and max)

	Parameters

	
	name – str the name of the redis key

	min –

	max –

	start –

	num –

	withscores –

	score_cast_func –

	Returns

	Future()

	
zrank(name: str, value: str) → redpipe.futures.Future[int][int]

	Returns the rank of the element.

	Parameters

	
	name – str the name of the redis key

	value – the element in the sorted set

	
zrem(name: str, *values) → redpipe.futures.Future

	Remove the values from the SortedSet

	Parameters

	
	name – str the name of the redis key

	values –

	Returns

	True if at least one value is successfully
removed, False otherwise

	
zremrangebylex(name: str, min: float, max: float) → redpipe.futures.Future[int][int]

	Remove all elements in the sorted set between the
lexicographical range specified by min and max.

Returns the number of elements removed.
:param name: str the name of the redis key
:param min: int or -inf
:param max: into or +inf
:return: Future()

	
zremrangebyrank(name: str, min: float, max: float) → redpipe.futures.Future[int][int]

	Remove a range of element between the rank start and
stop both included.

	Parameters

	
	name – str the name of the redis key

	min –

	max –

	Returns

	Future()

	
zremrangebyscore(name: str, min: int, max: int) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	Remove a range of element by between score min_value and
max_value both included.

	Parameters

	
	name – str the name of the redis key

	min –

	max –

	Returns

	Future()

	
zrevrange(name: str, start: int, end: int, withscores: bool = False, score_cast_func: Callable = <class 'float'>) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	Returns the range of items included between start and stop
in reverse order (from high to low)

	Parameters

	
	name – str the name of the redis key

	start –

	end –

	withscores –

	score_cast_func –

	Returns

	

	
zrevrangebylex(name: str, max: float, min: float, start: Optional[int] = None, num: Optional[int] = None) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	
	Return the reversed lexicographical range of values from the sorted set

	between max and min.

If start and num are specified, then return a slice of the
range.

	Parameters

	
	name – str the name of the redis key

	max – int or ‘+inf’

	min – int or ‘-inf’

	start – int

	num – int

	Returns

	Future()

	
zrevrangebyscore(name: str, max: float, min: float, start: Optional[int] = None, num: Optional[int] = None, withscores: bool = False, score_cast_func: Callable = <class 'float'>) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	Returns the range of elements between the scores (min and max).

If start and num are specified, then return a slice
of the range.

withscores indicates to return the scores along with the values.
The return type is a list of (value, score) pairs

score_cast_func` a callable used to cast the score return value

	Parameters

	
	name – str the name of the redis key

	max – int

	min – int

	start – int

	num – int

	withscores – bool

	score_cast_func –

	Returns

	Future()

	
zrevrank(name: str, value: str)

	Returns the ranking in reverse order for the member

	Parameters

	
	name – str the name of the redis key

	value – str

	
zscan(name: str, cursor: int = 0, match: Optional[str] = None, count: Optional[int] = None, score_cast_func: Callable = <class 'float'>) → redpipe.futures.Future[typing.Tuple[int, typing.List[typing.Tuple[str, typing.Any]]]][Tuple[int, List[Tuple[str, Any]]]]

	Incrementally return lists of elements in a sorted set. Also return a
cursor indicating the scan position.

match allows for filtering the members by pattern

count allows for hint the minimum number of returns

score_cast_func a callable used to cast the score return value

	
zscan_iter(name: str, match: Optional[str] = None, count: Optional[int] = None, score_cast_func: Callable = <class 'float'>) → Iterable[Tuple[str, Any]]

	Make an iterator using the ZSCAN command so that the client doesn’t
need to remember the cursor position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

score_cast_func a callable used to cast the score return value

	
zscore(name: str, value: Any) → redpipe.futures.Future[float][float]

	Return the score of an element

	Parameters

	
	name – str the name of the redis key

	value – the element in the sorted set key

	Returns

	Future()

	
zunionstore(dest: str, keys: List[str], aggregate: Optional[str] = None) → redpipe.futures.Future[int][int]

	Union multiple sorted sets specified by keys into
a new sorted set, dest. Scores in the destination will be
aggregated based on the aggregate, MIN, MAX,
or SUM if none is provided.

	
class redpipe.keyspaces.Hash(pipe: Optional[redpipe.pipelines.PipelineInterface] = None)

	Bases: redpipe.keyspaces.Keyspace

Manipulate a Hash key in Redis.

	
fields = {}

	

	
hdel(name: str, *keys) → redpipe.futures.Future[int][int]

	Delete one or more hash field.

	Parameters

	
	name – str the name of the redis key

	keys – on or more members to remove from the key.

	Returns

	Future()

	
hexists(name: str, key: str) → redpipe.futures.Future[bool][bool]

	Returns True if the field exists, False otherwise.

	Parameters

	
	name – str the name of the redis key

	key – the member of the hash

	Returns

	Future()

	
hget(name: str, key: str) → redpipe.futures.Future[typing.Any][Any]

	Returns the value stored in the field, None if the field doesn’t exist.

	Parameters

	
	name – str the name of the redis key

	key – the member of the hash

	Returns

	Future()

	
hgetall(name: str) → redpipe.futures.Future[typing.Dict[str, typing.Any]][Dict[str, Any]]

	Returns all the fields and values in the Hash.

	Parameters

	name – str the name of the redis key

	Returns

	Future()

	
hincrby(name: str, key: str, amount: int = 1) → redpipe.futures.Future[int][int]

	Increment the value of the field.

	Parameters

	
	name – str the name of the redis key

	key – str

	amount – int

	Returns

	Future()

	
hincrbyfloat(name: str, key: str, amount: float = 1.0) → redpipe.futures.Future[float][float]

	Increment the value of the field.

	Parameters

	
	name – str the name of the redis key

	key – the name of the emement in the hash

	amount – float

	Returns

	Future()

	
hkeys(name: str) → redpipe.futures.Future[typing.List[str]][List[str]]

	Returns all fields name in the Hash.

	Parameters

	name – str the name of the redis key

	Returns

	Future

	
hlen(name: str) → redpipe.futures.Future[int][int]

	Returns the number of elements in the Hash.

	Parameters

	name – str the name of the redis key

	Returns

	Future()

	
hmget(name: str, keys: List[str], *args) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	Returns the values stored in the fields.

	Parameters

	
	name – str the name of the redis key

	keys –

	Returns

	Future()

	
hmset(name: str, mapping: Dict[str, Any]) → redpipe.futures.Future[NoneType][None]

	Sets or updates the fields with their corresponding values.

	Parameters

	
	name – str the name of the redis key

	mapping – a dict with keys and values

	Returns

	Future()

	
hscan(name: str, cursor: int = 0, match: Optional[str] = None, count: Optional[int] = None) → redpipe.futures.Future[typing.Tuple[int, typing.Dict[str, typing.Any]]][Tuple[int, Dict[str, Any]]]

	Incrementally return key/value slices in a hash. Also return a cursor
indicating the scan position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
hscan_iter(name: str, match: Optional[str] = None, count: Optional[int] = None) → Iterable[Tuple[str, Any]]

	Make an iterator using the HSCAN command so that the client doesn’t
need to remember the cursor position.

match allows for filtering the keys by pattern

count allows for hint the minimum number of returns

	
hset(name: str, key: str, value: Any) → redpipe.futures.Future[int][int]

	Set member in the Hash at value.

	Parameters

	
	name – str the name of the redis key

	value –

	key – the member of the hash key

	Returns

	Future()

	
hsetnx(name: str, key: str, value: Any) → redpipe.futures.Future[int][int]

	Set member in the Hash at value.

	Parameters

	
	name – str the name of the redis key

	value –

	key –

	Returns

	Future()

	
hstrlen(name: str, key: str) → redpipe.futures.Future

	Return the number of bytes stored in the value of key
within hash name

	
hvals(name: str) → redpipe.futures.Future[typing.List[typing.Any]][List[Any]]

	Returns all the values in the Hash
Unfortunately we can’t type cast these fields.
it is a useless call anyway imho.

	Parameters

	name – str the name of the redis key

	Returns

	Future()

	
memberparse

	alias of redpipe.fields.TextField

	
class redpipe.keyspaces.HyperLogLog(pipe: Optional[redpipe.pipelines.PipelineInterface] = None)

	Bases: redpipe.keyspaces.Keyspace

Manipulate a HyperLogLog key in redis.

	
pfadd(name: str, *values) → redpipe.futures.Future[int][int]

	Adds the specified elements to the specified HyperLogLog.

	Parameters

	
	name – str the name of the redis key

	values – list of str

	
pfcount(*sources) → redpipe.futures.Future[int][int]

	Return the approximated cardinality of
the set observed by the HyperLogLog at key(s).

Using the execute_command because redis-py disabled it
unnecessarily for cluster.
You can only send one key at a time in that case,
or only keys that map to the same keyslot.
Use at your own risk.

	Parameters

	sources – [str] the names of the redis keys

	
pfmerge(dest: str, *sources) → redpipe.futures.Future[NoneType][None]

	Merge N different HyperLogLogs into a single one.

	Parameters

	
	dest –

	sources –

	Returns

	

redpipe.luascripts module

Some utility lua scripts used to extend some functionality in redis.
It also let’s me exercise the eval code path a bit.

redpipe.pipelines module

This is where the magic happens.
The most important components of redpipe are here.
The Pipeline and NestedPipeline classes and the pipeline function enable
Use to pass pipeline functions into each other and attach redis calls to them.

The main function exposed here is the pipeline function.
You will use it everywhere, so get used to this syntax:

def incr(name, pipe=None):
 with redpipe.autoexec(pipe=pipe) as pipe:
 return pipe.incr(name)

with redpipe.autoexec() as pipe:
 a = incr('a', pipe=pipe)
 b = incr('b', pipe=pipe)

print([a, b])

Look at the incr function.
The call to redpipe.pipeline will return a Pipeline object if None
is passed in. And if a Pipeline object is passed in, it will return a
NestedPipeline object. Those two objects present the same interface but
behave very differently.

Pipeline objects execute your pipelined calls.
NestedPipeline objects pass their commands up the chain to the parent
pipeline they wrap. This could be another NestedPipeline object, or
a Pipeline() object.

	
redpipe.pipelines.pipeline(pipe: Optional[redpipe.pipelines.PipelineInterface] = None, name: Optional[str] = None, autoexec: bool = False, exit_handler: Optional[Callable] = None) → Union[redpipe.pipelines.Pipeline, redpipe.pipelines.NestedPipeline]

	This is the foundational function for all of redpipe.
Everything goes through here.
create pipelines, nest pipelines, get pipelines for a specific name.
It all happens here.

Here’s a simple example:

with pipeline() as pipe:
 pipe.set('foo', 'bar')
 foo = pipe.get('foo')
 pipe.execute()
print(foo)
> bar

Now let’s look at how we can nest a pipeline.

def process(key, pipe=None):
 with pipeline(pipe, autoexec=True) as pipe:
 return pipe.incr(key)

with pipeline() as pipe:
 key1 = process('key1', pipe)
 key2 = process('key2', pipe)
 pipe.execute()

print([key1, key2])

> [1, 1]

	Parameters

	
	pipe – a Pipeline() or NestedPipeline() object, or None

	name – str, optional. the name of the connection to use.

	autoexec – bool, if true, implicitly execute the pipe

	exit_handler – Callable

	Returns

	Pipeline or NestedPipeline

	
redpipe.pipelines.autoexec(pipe: Optional[redpipe.pipelines.PipelineInterface] = None, name: Optional[str] = None, exit_handler: Optional[Callable] = None) → Union[redpipe.pipelines.Pipeline, redpipe.pipelines.NestedPipeline]

	create a pipeline with a context that will automatically execute the
pipeline upon leaving the context if no exception was raised.

	Parameters

	
	pipe –

	name –

	exit_handler –

	Returns

	

	
class redpipe.pipelines.PipelineInterface(*args, **kwargs)

	Bases: typing_extensions.Protocol

	
execute() → None

	

	
on_execute(callback: Callable) → None

	

	
reset() → None

	

redpipe.structs module

The Struct is a convenient way to access data in a hash.
Makes it possible to load data from redis as an object and access the fields.
Then store changes back into redis.

	
class redpipe.structs.Struct(_key_or_data: Union[str, Dict[KT, VT]], pipe: Optional[redpipe.pipelines.PipelineInterface] = None, fields: Union[str, List[str], None] = None, no_op: bool = False, nx: bool = False)

	Bases: object

load and store structured data in redis using OOP patterns.

If you pass in a dictionary-like object, redpipe will write all the
values you pass in to redis to the key you specify.

By default, the primary key name is _key.
But you should override this in your Struct with the key_name
property.

class Beer(redpipe.Struct):
 fields = {'name': redpipe.TextField}
 key_name = 'beer_id'

beer = Beer({'beer_id': '1', 'name': 'Schlitz'})

This will store the data you pass into redis.
It will also load any additional fields to hydrate the object.
RedPipe does this in the same pipelined call.

If you need a stub record that neither loads or saves data, do:

beer = Beer({'beer_id': '1'}, no_op=True)

You can later load the fields you want using, load.

If you pass in a string we assume it is the key of the record.
redpipe loads the data from redis:

beer = Beer('1')
assert(beer['beer_id'] == '1')
assert(beer['name'] == 'Schlitz')

If you need to load a record but only specific fields, you can say so.

beer = Beer('1', fields=['name'])

This will exclude all other fields.

RedPipe cares about pipelining and efficiency, so if you need to
bundle a bunch of reads or writes together, by all means do so!

beer_ids = ['1', '2', '3']
with redpipe.pipeline() as pipe:
 beers = [Beer(i, pipe=pipe) for i in beer_ids]
print(beers)

This will pipeline all 3 together and load them in a single pass
from redis.

The following methods all accept a pipe:

	__init__

	update

	incr

	decr

	pop

	remove

	clear

	delete

You can pass a pipeline into them to make sure that the network i/o is
combined with another pipeline operation.
The other methods on the object are about accessing the data
already loaded.
So you shouldn’t need to pipeline them.

One more thing … suppose you are storing temporary data and you want it
to expire after a few days. You can easily make that happen just by
changing the object definition:

class Beer(redpipe.Struct):
 fields = {'name': redpipe.TextField}
 key_name = 'beer_id'
 ttl = 24 * 60 * 60 * 3

This makes sure that any set operations on the Struct will set the expiry
at the same time. If the object isn’t modified for more than the seconds
specified in the ttl (stands for time-to-live), then the object will be
expired from redis. This is useful for temporary objects.

	
clear(pipe=None)

	delete the current redis key.

	Parameters

	pipe –

	Returns

	

	
connection = None

	

	
copy()

	like the dictionary copy method.

	Returns

	

	
decr(field: str, amount: int = 1, pipe: Optional[redpipe.pipelines.PipelineInterface] = None) → redpipe.futures.Future

	Inverse of incr function.

	Parameters

	
	field –

	amount –

	pipe –

	Returns

	Pipeline, NestedPipeline, or None

	
default_fields = 'all'

	

	
classmethod delete(keys, pipe=None)

	Delete one or more keys from the Struct namespace.

This is a class method and unlike the clear method,
can be invoked without instantiating a Struct.

	Parameters

	
	keys – the names of the keys to remove from the keyspace

	pipe – Pipeline, NestedPipeline, or None

	Returns

	None

	
field_attr_on = False

	

	
fields = {}

	

	
get(item, default=None)

	works like the dict get method.

	Parameters

	
	item –

	default –

	Returns

	

	
incr(field: str, amount: int = 1, pipe: Optional[redpipe.pipelines.PipelineInterface] = None) → redpipe.futures.Future

	Increment a field by a given amount.
Return the future

Also update the field.

	Parameters

	
	field –

	amount –

	pipe –

	Returns

	

	
items() → List[Tuple[str, Any]]

	We return the list of key/value pair tuples.
Similar to iteritems but in list form instead of as
a generator.
The reason we do this is because python2 code probably expects this to
be a list. Not sure if I could care, but just covering my bases.

Example:

u = User('1')
data = {k: v for k, v in u.items()}

Or:

u = User('1')
for k, v in u.items():
 print("%s: %s" % (k, v)

	Returns

	list, containing key/value pair tuples.

	
iteritems() → Iterable[Tuple[str, Any]]

	Support for the python 2 iterator of key/value pairs.
This includes the primary key name and value.

Example:

u = User('1')
data = {k: v for k, v in u.iteritems()}

Or:

u = User('1')
for k, v in u.iteritems():
 print("%s: %s" % (k, v)

	Returns

	generator, a list of key/value pair tuples

	
key

	

	
key_name = '_key'

	

	
keys() → List[str]

	Get a list of all the keys in the Struct.
This includes the primary key name, and all the elements
that are set into redis.

Note: even if you define fields on the Struct, those keys won’t
be returned unless the fields are actually written into the redis
hash.

u = User('1')
assert(u.keys() == ['_key', 'name'])

	Returns

	list

	
keyspace = None

	

	
load(fields: Union[str, List[str], None] = None, pipe: Optional[redpipe.pipelines.PipelineInterface] = None) → None

	Load data from redis.
Allows you to specify what fields to load.
This method is also called implicitly from the constructor.

	Parameters

	
	fields – ‘all’, ‘defined’, or array of field names

	pipe – Pipeline(), NestedPipeline() or None

	Returns

	None

	
persisted

	Not certain I want to keep this around.
Is it useful?

	Returns

	

	
pop(name, default=None, pipe=None)

	works like the dictionary pop method.

IMPORTANT!

This method removes the key from redis.
If this is not the behavior you want, first convert your
Struct data to a dict.

	Parameters

	
	name –

	default –

	pipe –

	Returns

	

	
remove(fields, pipe=None)

	remove some fields from the struct.
This will remove data from the underlying redis hash object.
After the pipe executes successfully, it will also remove it from
the current instance of Struct.

	Parameters

	
	fields – list or iterable, names of the fields to remove.

	pipe – Pipeline, NestedPipeline, or None

	Returns

	None

	
required = {}

	

	
ttl = None

	

	
update(changes: Dict[str, Any], pipe: Optional[redpipe.pipelines.PipelineInterface] = None, nx: bool = False)

	update the data in the Struct.

This will update the values in the underlying redis hash.
After the pipeline executes, the changes will be reflected here
in the local struct.
If any values in the changes dict are None, those fields will be
removed from redis and the instance.
The changes should be a dictionary representing the fields to change
and the values to change them to.
If you pass the nx flag, only sets the fields if they don’t exist yet.

	Parameters

	
	changes – dict

	pipe – Pipeline, NestedPipeline, or None

	nx – bool

	Returns

	None

redpipe.tasks module

When sending commands to multiple redis backends in one redpipe.pipeline,
this module gives us an api to allow threaded async communication to those
different backends, improving parallelism.

The AsynchronousTask is well tested and should work well.
But if you see any issues, you can easily disable this in your application.

redpipe.disable_threads()

Please report any issues [https://github.com/72squared/redpipe/issues].

	
redpipe.tasks.enable_threads()

	used to enable threaded behavior when talking to multiple redis backends
in one pipeline execute call.
Otherwise we don’t need it.
:return: None

	
redpipe.tasks.disable_threads()

	used to disable threaded behavior when talking to multiple redis backends
in one pipeline execute call.
Use this option if you are really concerned about python threaded behavior
in your application.
Doesn’t apply if you are only ever talking to one redis backend at a time.
:return: None

redpipe.version module

Utility for grabbing the redpipe version string from the VERSION file.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 redpipe	

 	
 	
 redpipe.connections	

 	
 	
 redpipe.exceptions	

 	
 	
 redpipe.fields	

 	
 	
 redpipe.futures	

 	
 	
 redpipe.keyspaces	

 	
 	
 redpipe.luascripts	

 	
 	
 redpipe.pipelines	

 	
 	
 redpipe.structs	

 	
 	
 redpipe.tasks	

 	
 	
 redpipe.version	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | Z

A

 	
 	AlreadyConnected

 	append() (redpipe.keyspaces.String method)

 	
 	AsciiField (class in redpipe.fields)

 	autoexec() (in module redpipe.pipelines)

B

 	
 	BinaryField (class in redpipe.fields)

 	bitcount() (redpipe.keyspaces.String method)

 	blpop() (redpipe.keyspaces.List method)

 	
 	BooleanField (class in redpipe.fields)

 	brpop() (redpipe.keyspaces.List method)

 	brpoplpush() (redpipe.keyspaces.List method)

C

 	
 	clear() (redpipe.structs.Struct method)

 	connect_redis() (in module redpipe.connections)

 	
 	connection (redpipe.structs.Struct attribute)

 	copy() (redpipe.structs.Struct method)

 	core() (redpipe.keyspaces.HashedString class method)

D

 	
 	decode() (redpipe.fields.BinaryField class method)

 	(redpipe.fields.BooleanField class method)

 	(redpipe.fields.DictField class method)

 	(redpipe.fields.Field class method)

 	(redpipe.fields.FloatField class method)

 	(redpipe.fields.IntegerField class method)

 	(redpipe.fields.ListField class method)

 	(redpipe.fields.StringListField class method)

 	(redpipe.fields.TextField class method)

 	
 	decr() (redpipe.structs.Struct method)

 	default_fields (redpipe.structs.Struct attribute)

 	delete() (redpipe.keyspaces.HashedString method)

 	(redpipe.structs.Struct class method)

 	DictField (class in redpipe.fields)

 	disable_threads() (in module redpipe.tasks)

 	disconnect() (in module redpipe.connections)

E

 	
 	enable_threads() (in module redpipe.tasks)

 	encode() (redpipe.fields.AsciiField class method)

 	(redpipe.fields.BinaryField class method)

 	(redpipe.fields.BooleanField class method)

 	(redpipe.fields.DictField class method)

 	(redpipe.fields.Field class method)

 	(redpipe.fields.FloatField class method)

 	(redpipe.fields.IntegerField class method)

 	(redpipe.fields.ListField class method)

 	(redpipe.fields.StringListField class method)

 	(redpipe.fields.TextField class method)

 	
 	Error

 	execute() (redpipe.pipelines.PipelineInterface method)

F

 	
 	Field (class in redpipe.fields)

 	field_attr_on (redpipe.structs.Struct attribute)

 	fields (redpipe.keyspaces.Hash attribute)

 	(redpipe.structs.Struct attribute)

 	
 	FloatField (class in redpipe.fields)

 	Future (class in redpipe.futures)

G

 	
 	get() (redpipe.keyspaces.HashedString method)

 	(redpipe.keyspaces.String method)

 	(redpipe.structs.Struct method)

 	
 	getbit() (redpipe.keyspaces.String method)

H

 	
 	Hash (class in redpipe.keyspaces)

 	HashedString (class in redpipe.keyspaces)

 	hdel() (redpipe.keyspaces.Hash method)

 	hexists() (redpipe.keyspaces.Hash method)

 	hget() (redpipe.keyspaces.Hash method)

 	hgetall() (redpipe.keyspaces.Hash method)

 	hincrby() (redpipe.keyspaces.Hash method)

 	hincrbyfloat() (redpipe.keyspaces.Hash method)

 	hkeys() (redpipe.keyspaces.Hash method)

 	
 	hlen() (redpipe.keyspaces.Hash method)

 	hmget() (redpipe.keyspaces.Hash method)

 	hmset() (redpipe.keyspaces.Hash method)

 	hscan() (redpipe.keyspaces.Hash method)

 	hscan_iter() (redpipe.keyspaces.Hash method)

 	hset() (redpipe.keyspaces.Hash method)

 	hsetnx() (redpipe.keyspaces.Hash method)

 	hstrlen() (redpipe.keyspaces.Hash method)

 	hvals() (redpipe.keyspaces.Hash method)

 	HyperLogLog (class in redpipe.keyspaces)

I

 	
 	id() (redpipe.futures.Future method)

 	incr() (redpipe.keyspaces.HashedString method)

 	(redpipe.keyspaces.String method)

 	(redpipe.structs.Struct method)

 	incrby() (redpipe.keyspaces.HashedString method)

 	(redpipe.keyspaces.String method)

 	incrbyfloat() (redpipe.keyspaces.HashedString method)

 	(redpipe.keyspaces.String method)

 	IntegerField (class in redpipe.fields)

 	
 	InvalidOperation

 	InvalidPipeline

 	InvalidValue

 	IS() (in module redpipe.futures)

 	(redpipe.futures.Future method)

 	is_true() (redpipe.fields.BooleanField class method)

 	ISINSTANCE() (in module redpipe.futures)

 	isinstance() (redpipe.futures.Future method)

 	items() (redpipe.structs.Struct method)

 	iteritems() (redpipe.structs.Struct method)

K

 	
 	key (redpipe.structs.Struct attribute)

 	key_name (redpipe.structs.Struct attribute)

 	
 	keys() (redpipe.structs.Struct method)

 	keyspace (redpipe.structs.Struct attribute)

L

 	
 	lindex() (redpipe.keyspaces.List method)

 	List (class in redpipe.keyspaces)

 	ListField (class in redpipe.fields)

 	llen() (redpipe.keyspaces.List method)

 	load() (redpipe.structs.Struct method)

 	
 	lpop() (redpipe.keyspaces.List method)

 	lpush() (redpipe.keyspaces.List method)

 	lrange() (redpipe.keyspaces.List method)

 	lrem() (redpipe.keyspaces.List method)

 	lset() (redpipe.keyspaces.List method)

 	ltrim() (redpipe.keyspaces.List method)

M

 	
 	memberparse (redpipe.keyspaces.Hash attribute)

 	
 	mget() (redpipe.keyspaces.HashedString method)

 	(redpipe.keyspaces.String method)

O

 	
 	on_execute() (redpipe.pipelines.PipelineInterface method)

P

 	
 	PATTERN (redpipe.fields.AsciiField attribute)

 	persisted (redpipe.structs.Struct attribute)

 	pfadd() (redpipe.keyspaces.HyperLogLog method)

 	pfcount() (redpipe.keyspaces.HyperLogLog method)

 	pfmerge() (redpipe.keyspaces.HyperLogLog method)

 	
 	pipe (redpipe.keyspaces.HashedString attribute)

 	pipeline() (in module redpipe.pipelines)

 	PipelineInterface (class in redpipe.pipelines)

 	pop() (redpipe.structs.Struct method)

 	psetex() (redpipe.keyspaces.String method)

R

 	
 	redpipe (module)

 	redpipe.connections (module)

 	redpipe.exceptions (module)

 	redpipe.fields (module)

 	redpipe.futures (module)

 	redpipe.keyspaces (module)

 	redpipe.luascripts (module)

 	redpipe.pipelines (module)

 	redpipe.structs (module)

 	redpipe.tasks (module)

 	
 	redpipe.version (module)

 	remove() (redpipe.structs.Struct method)

 	required (redpipe.structs.Struct attribute)

 	reset() (in module redpipe.connections)

 	(redpipe.pipelines.PipelineInterface method)

 	result (redpipe.futures.Future attribute)

 	ResultNotReady

 	rpop() (redpipe.keyspaces.List method)

 	rpoplpush() (redpipe.keyspaces.List method)

 	rpush() (redpipe.keyspaces.List method)

S

 	
 	sadd() (redpipe.keyspaces.Set method)

 	scan_iter() (redpipe.keyspaces.HashedString method)

 	scard() (redpipe.keyspaces.Set method)

 	sdiff() (redpipe.keyspaces.Set method)

 	sdiffstore() (redpipe.keyspaces.Set method)

 	Set (class in redpipe.keyspaces)

 	set() (redpipe.futures.Future method)

 	(redpipe.keyspaces.HashedString method)

 	(redpipe.keyspaces.String method)

 	setbit() (redpipe.keyspaces.String method)

 	setex() (redpipe.keyspaces.String method)

 	setnx() (redpipe.keyspaces.HashedString method)

 	(redpipe.keyspaces.String method)

 	setrange() (redpipe.keyspaces.String method)

 	shard() (redpipe.keyspaces.HashedString class method)

 	shard_count (redpipe.keyspaces.HashedString attribute)

 	sinter() (redpipe.keyspaces.Set method)

 	
 	sinterstore() (redpipe.keyspaces.Set method)

 	sismember() (redpipe.keyspaces.Set method)

 	smembers() (redpipe.keyspaces.Set method)

 	SortedSet (class in redpipe.keyspaces)

 	spop() (redpipe.keyspaces.Set method)

 	srandmember() (redpipe.keyspaces.Set method)

 	srem() (redpipe.keyspaces.Set method)

 	sscan() (redpipe.keyspaces.Set method)

 	sscan_iter() (redpipe.keyspaces.Set method)

 	String (class in redpipe.keyspaces)

 	StringListField (class in redpipe.fields)

 	strlen() (redpipe.keyspaces.HashedString method)

 	(redpipe.keyspaces.String method)

 	Struct (class in redpipe.structs)

 	substr() (redpipe.keyspaces.String method)

 	sunion() (redpipe.keyspaces.Set method)

 	sunionstore() (redpipe.keyspaces.Set method)

T

 	
 	TextField (class in redpipe.fields)

 	
 	ttl (redpipe.structs.Struct attribute)

U

 	
 	update() (redpipe.structs.Struct method)

Z

 	
 	zadd() (redpipe.keyspaces.SortedSet method)

 	zcard() (redpipe.keyspaces.SortedSet method)

 	zcount() (redpipe.keyspaces.SortedSet method)

 	zincrby() (redpipe.keyspaces.SortedSet method)

 	zlexcount() (redpipe.keyspaces.SortedSet method)

 	zrange() (redpipe.keyspaces.SortedSet method)

 	zrangebylex() (redpipe.keyspaces.SortedSet method)

 	zrangebyscore() (redpipe.keyspaces.SortedSet method)

 	zrank() (redpipe.keyspaces.SortedSet method)

 	zrem() (redpipe.keyspaces.SortedSet method)

 	
 	zremrangebylex() (redpipe.keyspaces.SortedSet method)

 	zremrangebyrank() (redpipe.keyspaces.SortedSet method)

 	zremrangebyscore() (redpipe.keyspaces.SortedSet method)

 	zrevrange() (redpipe.keyspaces.SortedSet method)

 	zrevrangebylex() (redpipe.keyspaces.SortedSet method)

 	zrevrangebyscore() (redpipe.keyspaces.SortedSet method)

 	zrevrank() (redpipe.keyspaces.SortedSet method)

 	zscan() (redpipe.keyspaces.SortedSet method)

 	zscan_iter() (redpipe.keyspaces.SortedSet method)

 	zscore() (redpipe.keyspaces.SortedSet method)

 	zunionstore() (redpipe.keyspaces.SortedSet method)

Indexes

Indexes in Redpipe are really just hashes that allow you to shard the index
across multiple keys transparently.

This is not really a core part of redpipe, but the pattern came up so
frequently that it made sense to include it here. And it is a relatively
small peice of code.

For now, refer to the test-case on how to use this.

More detailed documentation will be given in the future as this logic
solidifies.

Here is what a definition might look like:

class MyIndex(redpipe.Index):
 keyspace = 'my_index'
 connection = 'default'
 shard_count = 1000

This will namespace the shards under the keyspace my_index:%s:u.
The string interpolated inside of this keyspace will be a string of digits
between 0 and 999.

To invoke it, you can do:

this will result in a returned value of ‘test’ for key foo123.

Theoretically, you could just as easily use a simple string keyspace. But
then you would need a new key for each value you need to store. this approach
groups all the values together efficiently beneath a single keyspace.

 nav.xhtml

 Table of Contents

 		
 RedPipe: Pain-Free Pipelining

 		
 Rationale

 		
 Why do I need this?

 		
 Pipelining is Cool, But …

 		
 Pipelining is Hard to do

 		
 How RedPipe Makes Things Easier

 		
 Reusable Building Blocks

 		
 Getting Started

 		
 Installation

 		
 Get the Source Code

 		
 Connect redis-py to RedPipe

 		
 Using RedPipe

 		
 Reusable Functions

 		
 Futures

 		
 Gotchas

 		
 Examples

 		
 Json Serialization

 		
 Automatic Pipeline Execution

 		
 Callbacks

 		
 Use Cases

 		
 Gotchas

 		
 Named Connections

 		
 How to Configure multiple Connections

 		
 Why Named Connections are Needed

 		
 Talking to Multiple Servers in Parallel

 		
 Nested Pipelines

 		
 How it works

 		
 How to use it

 		
 Transactions

 		
 Working with Keyspaces

 		
 Example of a Sorted Set Keyspace

 		
 Supported Keyspace Types

 		
 Hashed Strings

 		
 Character Encoding in Keyspaces

 		
 Fields in Hashes

 		
 Data Types defined for Keyspaces

 		
 Scanning the Keys in a Keyspace

 		
 Structs

 		
 Easy, Efficient I/O

 		
 Defining a Struct

 		
 Creating New Structs

 		
 Accessing the Data

 		
 Modifying Structs

 		
 Using the Underlying Hash

 		
 Deleting Structs

 		
 Extra Fields

 		
 Temporary Structs

 		
 Why Struct and not Model?

 		
 Why no ORM?

 		
 Latency

 		
 Project Status

 		
 Road Map

 		
 Open Source Redis Cluster Support

 		
 Error Handling

 		
 Redis Pipelining and Errors

 		
 Errors Raised by RedPipe

 		
 Unicode Support

 		
 Licensing

 		
 FAQ

 		
 Q: Why am I getting InvalidPipeline?

 		
 Q: I used decode_responses in redis and got an error in redpipe. WTF?

 		
 Q: Why name it RedPipe? That’s dumb.

 		
 Testing

 		
 Test Setup

 		
 Running the Tests

 		
 Running Tests Against Supported Python Versions

 		
 Using Docker to Test

 		
 Building Documentation

 		
 Benchmarking

 		
 Inspiration

 		
 Disclaimers

 		
 Thread Safety

 		
 Character Encoding

 		
 Lua Scripting

 		
 Contributing

 		
 Release Notes

 		
 4.0.1 (December 28, 2022)

 		
 4.0.0 (December 27, 2022)

 		
 3.0.1 (December 26, 2022)

 		
 3.0.0 (December 26, 2022)

 		
 2.3.6 (October 30, 2019)

 		
 2.3.5 (July 3, 2019)

 		
 2.3.4 (June 24, 2019)

 		
 2.3.3 (June 21, 2019)

 		
 2.3.2 (June 19, 2019)

 		
 2.3.1 (Nov 29, 2018)

 		
 2.3.0 (Nov 28, 2018)

 		
 2.2.0 (Aug 14, 2018)

 		
 2.1.2 (July 17, 2018)

 		
 2.1.1 (July 13, 2018)

 		
 2.1.0 (July 11, 2018)

 		
 2.0.2 (May 23, 2018)

 		
 2.0.1 (March 15, 2018)

 		
 2.0.0 (March 8, 2018)

 		
 1.0.4 (September 28, 2017)

 		
 1.0.3 (August 10, 2017)

 		
 1.0.2 (June 23, 2017)

 		
 1.0.1 (May 29, 2017

 		
 1.0.0 (May 11, 2017

 		
 1.0.0rc3 (May 10, 2017)

 		
 1.0.0rc2 (May 9, 2017)

 		
 1.0.0rc1 (May 7, 2017)

 		
 0.5.0 (May 5, 2017)

 		
 0.4.0 (May 4, 2017)

 		
 0.3.2 (May 3, 2017)

 		
 0.3.1 (May 2, 2017)

 		
 0.3.0 (April 30, 2017)

 		
 0.2.5 (April 30, 2017)

 		
 0.2.4 (April 28, 2017)

 		
 0.2.3 (April 27, 2017)

 		
 0.2.2 (April 26, 2017)

 		
 0.2.1 (April 24, 2017)

 		
 0.2.0 (April 24, 2017)

 		
 0.1.1 (April 23, 2017)

 		
 0.1.0 (April 21, 2017)

 		
 Old Releases

 		
 Project Authors

 		
 redpipe package

 		
 Module Structure

 		
 Connections

 		
 Fields

 		
 Keyspaces

 		
 Exceptions

 		
 Misc

 		
 Submodules

 		
 redpipe.connections module

 		
 redpipe.exceptions module

 		
 redpipe.fields module

 		
 redpipe.futures module

 		
 redpipe.keyspaces module

 		
 redpipe.luascripts module

 		
 redpipe.pipelines module

 		
 redpipe.structs module

 		
 redpipe.tasks module

 		
 redpipe.version module

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/down.png

_static/redpipe-logo.gif
=2 RedPipe

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

